
v v vv v v v vv v v v vv v v v vv v v v v v
Cologne University of Applied Sciences

07 Faculty of Information, Media and Electrical Engineering
Institute of Communications Engineering

Design and Implementation of a Knowledge Acquisition System for
Automated Ontology Synthesis; based on Natural Language Processing

including Methods from Computational Intelligence

B. Sc. Andreas Schwenk

Submitted in partial fulfillment of the requirements for the Master module
“Research Project”

Student: Andreas Schwenk
Bachelor of Science in Information Engineering

Matriculation number: 11069755

Program: Information Engineering (Master’s Program)

Supervisor: Prof. Dr. phil. Gregor Büchel

Handover date: 2014-05-06

Andreas Schwenk

The presented report is submitted for the partial fulfillment of the requirements for the master
module “Research Project” 1.

I hereby declare that the paper submitted was in all parts exclusively prepared on my own.
All other resources or other means, than those explicitly refereed to, have not been utilized. All
implemented fragments of text, employed in a literal and / or analogous manner have been marked
as such.

Windeck and Cologne in May 2014, Andreas Schwenk

1“Research Project ” is a 10 ECTS Master Course (Program: Information Engineering) at Cologne University
of Applied Sciences (=: CUAS). The course furthermore consists of a practical part and a presentation of the final
results.

2

Andreas Schwenk Contents

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Objective . 9
1.3 Key Aspects to be Considered . 9
1.4 Determination of a Knowledge Domain for Evaluation 10
1.5 Contents . 10

2 Basics 11
2.1 Knowledge Representation . 11

2.1.1 Ontologies . 11
2.2 Computer Linguistics and Natural Language Processing 12

2.2.1 Grammar . 12
2.3 Computational Intelligence . 12

2.3.1 Fuzzy Logic . 13
2.3.2 Artificial Neural Networks . 13

2.4 Mathematical Notation . 16
2.4.1 Phrases . 16
2.4.2 Grammar . 16

3 Conception 17
3.1 Corpus Control . 18
3.2 Preprocessing . 18
3.3 Information Extraction . 19
3.4 Graphical User Interface Design . 19

3.4.1 Corpus Management . 20
3.4.2 Options . 20
3.4.3 Phrase Analysis . 20

3

Andreas Schwenk Contents

4 Preprocessing 22
4.1 Lexical Analysis . 22

4.1.1 N-Grams . 23
4.2 Syntactic and Semantic Analysis . 23

4.2.1 Word Classification . 24
4.2.2 Lexeme Detection . 26
4.2.3 Tempus Extraction . 28
4.2.4 Meanings . 28

4.3 Word Frequency . 29
4.3.1 British National Corpus . 29

4.4 Extraction of Semantic Relations . 30
4.4.1 Synonyms . 30
4.4.2 Hyperonyms . 30

4.5 Data Modeling . 31

5 Dependency Grammar Parsing 32
5.1 Introduction . 32

5.1.1 Classical Approaches . 32
5.1.2 A New Neuro-Fuzzy-Approach . 32
5.1.3 Mathematical Representation . 33

5.2 Design . 33
5.2.1 System Integration . 33
5.2.2 Training . 34
5.2.3 Graphical User Interface . 35

5.3 Algorithm . 36
5.3.1 Artificial Neural Networks for Supervised Learning 36
5.3.2 Fuzzy Logic to Clarify the Parsing Behavior with Natural Language Rules . . 38
5.3.3 Synthesis of the Fuzzy Rules from the Neuronal Data 40
5.3.4 Build the Grammar Tree . 41
5.3.5 Example . 42

5.4 Data Modeling . 42

6 Information Extraction 43
6.1 Word Frequency Analysis (Concepts C) . 43

6.1.1 Moving Toward a First Estimation of Concepts 43
6.1.2 Reduction of Redundancy . 44
6.1.3 Example and First Evaluation . 44

6.2 Dependency Grammar Analysis (Relations R) . 45
6.2.1 Algorithm . 45
6.2.2 Example . 46

6.3 Hyperonomy Analysis (Hierarchy of Concepts HC) 47
6.3.1 Example . 48

6.4 Consolidation and Ontology Synthesis . 48
6.4.1 Unification of Partial Ontologies . 48
6.4.2 Ontology Synthesis in the Web Ontology Language 49

6.5 Example . 50

4

Andreas Schwenk Contents

7 Implementation Remarks 51
7.1 Components . 51
7.2 Class Diagrams . 51
7.3 Statistics . 52

8 Evaluation 53
8.1 Protégé . 53
8.2 Resulting Ontology . 54

9 Conclusion 62

Bibliography 63

Appendices 65

A Document Type Definitions 66

B Fuzzy Logic Editor 69
B.1 Definition of a FLS via an XML File . 69

C Class Diagrams 70
C.1 Control . 70
C.2 Preprocessing . 71
C.3 Information Extraction . 74
C.4 Graphical User Interface . 74
C.5 Other Classes . 74

5

Andreas Schwenk Contents

Abstract

A knowledge acquisition system has been designed and implemented. The system is capable

of extracting information from a corpus, consisting of natural language based – and thus un-

structured – texts about a given knowledge domain D. This is achieved by a collaboration of

algorithms from Computational Intelligence and Computational Linguistics (both subsets of the

Artificial Intelligence). The results may be used later as a basis for a Knowledge-Based System

(=: KBS).

The presented pipeline is subdivided into “Preprocessing” and “Information Extraction”.

The former consists of a syntactic and a semantic analysis, i.e. it disassembles the text into

(meta-) tokens, enriches it with semantic relations, determines the word classes, the word fre-

quencies and predicts the tense per phrase. A new Neuro-Fuzzy based approach for hierarchical

parsing of a dependency grammar was developed. The preprocessing part is supported by a set

of web resources. The second subsystem consolidates the raw data to finally generate a struc-

tured knowledge representation in form of an ontology O′ ⊆ O = (C,R,HC,A0). Instruments

are word frequency analysis, lexical databases and dependency grammar analysis.

The chosen testing domain D := “The Structure of The Universe” evaluates the applied

methods.

KEYWORDS: Artificial Intelligence, Artificial Neural Networks (Supervised Learning), Com-

putational Intelligence, Crisp Logic, Dependency Grammar Parsing, Fuzzy Logic, Information

Extraction, Information Retrieval, Knowledge Based Systems, Lexical Databases, Natural Lan-

guage Processing, Ontologies, Processing of Linguistic Signs, Semantic and Syntactic Analysis,

Unstructured Text Processing, Word Frequency Analysis.

6

Andreas Schwenk Contents

List of Abbreviations / Acronyms

A0 Axioms
ANN Artificial Neural Network
ASCII American Standard Code for Information Interchange
BNC British National Corpus
C Concept
CI Computational Intelligence
CSV Comma-Seperated Values
D Domain
DG Dependency { Grammar | Graph }
DOM Document Object Model
DoT Degree of Truth
EBNF Extended Backus–Naur Form
ERD Entity Relationship Diagram
FL Fuzzy Logic
FLE Fuzzy Logic Editor
FLS Fuzzy Logic System
FRS Fuzzy Rule Synthesis
GUI Graphical User Interface
HC Hierarchy of Concepts
HTML Hypertext Markup Language
HYP Hyperonym (=: Hyernym)2

KBS Knowledge-Based System
KDB Knowledge Data Base
LEX lexeme
LT Linguistic Term
LV Linguistic Variable
MLP Multilayer Perceptron
NLP Natural Language Processing
NP Nominal Phrase
O Ontology
OE Ontology Extraction
OWL Web Ontology Language
PMF Probability Mass Function
R Relation
R Rule
RDF Resource Description Framework
RDFS RDF-Schema
STK Semanticized Token
SYN Synonym
TS Training Set
UML Unified Modeling Language
VP Verbal Phrase
XML Extensible Markup Language

2Often abbreviated to “hr”. In some cases “hyp” means “hyponym”. We always use the definition: “hyp :=
hyper(o)nym” in this document.

7

Andreas Schwenk Chapter 1. Introduction

Chapter 1

Introduction

1.1 Motivation
The amount of information increased exponentially since the invention of writing systems1. To over-
come this (metaphorical derived term:) Information Explosion, “techniques to gather knowledge
from an overabundance of electronic information” [Wik14a] have been developed.

An example application field for automated information retrieval (We call it here: Knowledge
Acquisition; refer also to the relation of “Data Mining”) is e.g. an autonomous system, i.e. a
robot, that communicates with human beings. Whereas it is not clear if artificial intelligence
will ever reach the power of the human brain (either in terms of logic or creativity), methods of
information gathering to build up a knowledge base, is substantial. Beneath this – more or less
science fiction scenario – we need to supply existing and intensely used systems like software agents
with information, i.e. a formal structure of knowledge representation for reasoning.

Information can be either stored as structured2 or unstructured data, or in a hybrid form –
so called semi structured data – e.g. XML3. The former is homogeneously formed and therefore
rather simple to parse. In this project, we will focus on unstructured data, i.e. natural language
texts. Reasons for this decision is the respect to human evolution and thus, the high-quantitative
availability of natural language text sources. The main challenge in Natural Language Processing
(=: NLP), that is in this case parsing and machine-learning natural language texts, is uncertainty.
We can only extract features in form of facts up to a certain probability.

To give a perspective to parts of this work, we list the key topics from the science of Natural
Language Processing4. The terminology is taken from [CFL12] an can be interpreted as a partial
quantity of the entirety of this knowledge domain. The list has no certain structure and topics that
correlate with this project are tagged with “(∗)”:

• Automatic summarization (∗)
• Machine Translation
• Natural language generation
• Natural language understanding (∗)
• Parsing (∗)
• Question Answering
• Relationship extraction (∗)
• Sentence breaking (∗)
• Speech recognition and segmentation
• Topic segmentation (∗)
• Word segmentation (∗)

1Books losses in the late antiquity left out. Compare e.g. to [Joh65].
2Relational databases; tables.
3XML := Extensible Markup Language.
4NLP := { Computer Science ∪ Artificial Intelligence (=: AI) ∪ Linguistics. }; deals with Human-computer

interaction.

8

Andreas Schwenk Chapter 1. Introduction

1.2 Objective
The main objective of this work is concretized in figure 1.1.

Figure 1.1: Objective – Simple Overview

KDB1

Image Metadata:
Andreas Schwenk

1.0 / 2013-09-30
Author:
Revision:

1Pre-existing and / or learned
 [domain specific] Knowledge Data Base (:= KDB)
2specified in OWL

Unstructured
Text Sources

in Natural
Language

Input:

Output:

Web

SYSTEM
to be

designed
Ontology2

O = (C, R, HC, A0)

Ontology2

O = (C, R, HC, A0)

The system boundary is defined as follows: First, a set of unstructured text sources t in natural
language (=: corpus) is read. The system extracts data5 and stores it in a Knowledge Data Base (=:
KDB) for intermediate persistence. The latter may be partial exist a priori – e.g. from previous
system runs – and thus it can be reused in subsequent steps to get better convergence, i.e. to
increase knowledge and to reduce uncertainty. E.g. we will later see that a high quantity of text
sources improves the detection of keywords, i.e. concepts. The output is structured as an (formal)
ontology O and is calculated via a hypothetical function f for the corpus C = {t1, . . . , tN} as
follows:

(1.) O0 := ∅
(2.) ∀i∈[1,N]∈N : Oi := f(ti, KDB, Oi−1) (1.1)

with O := (C,R,HC,A0) := (Concepts,Relations,Hierarchy of Concepts,Axioms), ti the currently
processed text, Oi the current Ontology estimation, and N the number of system runs. Furthermore
we only consider O′ := (C,R,HC, ∅) ⊂ O.

1.3 Key Aspects to be Considered
The following guiding questions must be considered over the entire design process. They implicitly
define the multifacetedness of natural language processing:

• How can a text written in a natural language be parsed? What is the difference to process
formal languages?
• How can semantics and semantic fields – e.g. polysemy – be extracted?
• Which models and methods exist to represent uncertainty? Which parameters, i.e. concrete

implementations, can be applied in the field of NLP?
• How can conclusions be drawn?
• Is it possible to effectively learn complex relationships (including semantic relations) from
natural language without having a priori knowledge in some kind of databases (=: DBs)? If
not; which kind of databases will be needed, and do these DBs have to be domain-specific?
• How can concepts be determined from a set of substantives?
• How can the extracted knowledge be transformed into a formal ontology O = (C,R,HC,A0)?

5The generic term “data” will be explicitly specified below.

9

Andreas Schwenk Chapter 1. Introduction

1.4 Determination of a Knowledge Domain for Evaluation
To verify the results6, the developed system must be tested with a knowledge domain D. As stated
above, the system input must be a corpus of natural language based and unstructured texts in
English. We have chosen D := “The Universe and its structures” as a concrete evaluation domain.
Main topics may be { orbits: planets, stars, . . .; galaxies, galaxy groups, galaxy clusters, filaments,
. . .; discoverers; history; . . . }. Advantageous terms for the chosen domain can be summarized as
first, that a very large base of online text sources is freely available. Since the domain belongs
to the natural sciences, the text sources have (presumably) a very factual and objective charac-
ter. Semantic fields may be more easy resolved, due to their minor frequency in occurrence; e.g.
homonyms are less frequent in contrast to text about human sciences. Despite, the usual charac-
teristics of natural language is retained, as information may be expressed in a very heterogeneous
way. Thus the general demand for a system that is resistant to uncertainty remains. Due to an
online-behavior of the system, the domain could be replaced by another domain or expanded at
any time, for further fine-tuning aspects.

1.5 Contents
The text at hand is divided into two parts: While part one describes the theory, concepts and
evaluation, part two consists of the listing of (nearly) all source codes7.

The first chapter gives an overview about the major project goals and briefly enumerates some
of the challenges in natural language processing.

The next chapter “Basics” describes prerequisites from natural language processing and com-
putational intelligence.

The third chapter “Conception” outlines a first subdivision of the problem, postulates main
components of the system and justifies their need. An overview of computational methods and
algorithms is given, with the goal of defining a high-level architecture.

Chapter four (“Preprocessing”) gives an overview about the tokenization process, describes the
entire process of retrieving information on a word base and finally consolidates first atoms to higher
level structures, i.e. NGRAMs and phrase fragments.

The final step of the preprocessing – that is the entirety of work on a single phrase – is outsourced
to a separate chapter “Dependency Grammar Parsing”; due to it’s complexity. An advanced neuro-
fuzzy approach is presented, that is independent of additional external databases8.

The kernel of this work is explained in chapter six: “Information Extraction”. The joint of the
semantics of the preprocessed phrases; to finally synthesize an (estimation of an) ontology O.

“Implementation Remarks” gives a more detailed view on the programming aspects. The co-
operation of the software modules is enlightened, e.g. via UML-diagrams.

“Evaluation” examines a concrete system run that is based on the domain D := “The Universe”.
Several statistics show the uncertainty and effectiveness given a concrete text corpus as input.

Last chapter “Conclusion” gives a project recapitulation and evaluates the proposed and im-
plemented methods.

6Verification does primarily mean to rate the uncertainty.
7Excluding computer generated source files.
8Treebanks.

10

Andreas Schwenk Chapter 2. Basics

Chapter 2

Basics

2.1 Knowledge Representation

2.1.1 Ontologies

An Ontology is (in computer science) a formal knowledge representation that aims to get a common
understanding1 of a given knowledge domain D. With reference to [MV01], an ontology O and can
be defined as a quadruple:

O = (C,R,HC,A0) (2.1)

The mathematical objects are given as:

• C := { c1, c2, . . . } := a set of Concepts that is represented by a controlled vocabulary.

• R := { r1 := ϕ1(ci, cj), . . . } := a set of binary Relations between the concepts of C. ϕk is
an abbreviation for a name that describes the relation.

• HC := { hc1, hc2, . . . } := Hierarchy of Concepts that encapsulates concepts of C for that a
hyperonymial relationship < ci, cj > exists (where c1 is the hypernym of c2). According to
[Wor14], a hyperonym is a “super-subordinate relation” and defined as:

isKindOf (ci, cj) → cj ∈ hyperonym(ci) ⇒ < ci, cj > (2.2)

i.e. we have a hyperonomial relation between the two concepts ci and cj , in case that ci is
kind of a cj . Then cj is a hyperonym of ci. We will later abbreviate “hyperonym” with “hyp”.

• A0 := A set of Axioms that is formulated in a logic language. Axioms control properties of
the concepts in C. We do not consider axioms in further considerations (A0 := ∅).

An example for a partial ontology of the testing knowledge domain D := “Universe” could be:

O′Universe = ({sun, star, earth}, {circles(earth, sun)}, {< sun, star >}, ∅)

Note that we use the symbol O′ to indicate an ontology that omits specification of axioms A0.
Figure 2.1 depicts a semantic network2 for the ontology. The graph is derived as follows: G =
(V,E) := (C,R∪HC), with C,R,HC ∈ O′ and the mapping HC 7→ E : ei := hyp(ci ∈ hc, cj ∈ hc),
with hc ∈ HC, ei ∈ E and ci ∈ C.

Figure 2.1: Semantic Network for O′Universe

Image Metadata:
Andreas Schwenk

1.0 / 2014-03-30
Author:
Revision:

sun earthstar
hyp

circles

1Common understanding := shared understanding.
2E.g. [SS92] gives an introduction to semantic networks.

11

Andreas Schwenk Chapter 2. Basics

2.2 Computer Linguistics and Natural Language Processing
As indicated in the introduction, Natural Language Processing (=: NLP) is a multidisciplinary
field that unifies knowledge from Computer Science – especially Artificial Intelligence (=: AI) –
and Linguistics. NLP is substantial for the definition of interfaces for the interaction between
humans and computers. The next sections introduce some subtopics from Linguistics.

2.2.1 Grammar

A phrase is a sequence of words, represented in a certain word order, that is (besides linguistics
theory) implicitly applied by humans. If this combinatorial order is changed, either the syntax or
the semantics, (or both) would be influenced or falsified. The underlying rules are called grammar.
We can either generate (synthesize) language with respect to a given grammar, or parse a given
phrase; that is the inverse process, i.e. to find the order of applications of grammar rules.

There are two main approaches to categorize the type of grammar. First the Constituency
Grammar, also called Phrase Structure Grammar and second the Dependency Grammar. The for-
mer was developed by Noam Chomsky3 and decomposes a phrase step wise into smaller fragments.
The dependency grammar was developed by Lucien Tenière. Both types of grammar are strongly
equivalent, as described in [Gai65].

As in a later chapter explained, this works mainly focuses on the Dependency Grammar (=:
DG) to extract relational information. Figure 2.2 shows a concrete example to illuminate the
procedure:

Figure 2.2: Example for an Annotated Dependency Grammar Phrase

The earth is a planet

det noun verb det noun

word

word class

.

The earth is1 a planet .

DP NP VP DP NPphrase

VP

DP

NP NP

DP

1main verb (root) of the phrase s.
Image Metadata:

Andreas Schwenk
1.0 / 2013-10-12

Author:
Revision:

The
dependent

earth
head

NP

DP

link

The number of nodes is equal to the number of words (in contrast to Phrase Structure Gram-
mar). If two given words are linked, the source is called the head and the destination is called the
dependent. A characteristic of dependency grammar is the significance of the main verb. [CFL12].

We fill focus on the non-trivial parsing process in much detail in a later chapter. The approach
is non-standard with respect to literature, but delivers results that are reliable enough to support
the process of finding relations between concepts of the ontology.

2.3 Computational Intelligence
Computational Intelligence (=: CI) is a subset of the Artificial Intelligence (=: AI) and provides
algorithms that are derived from biology. To construct the dependency graph a symbiosis of Fuzzy
Logic and Artificial Neural Networks is used; thus we introduce both approaches in subsequent
chapters. A reference in literature is e.g. [RN10]. Also [Bar13] was used as a source.

3Chomsky found a formalization for languages, and thus created a link between the disciplines computer science
and linguistics

12

Andreas Schwenk Chapter 2. Basics

2.3.1 Fuzzy Logic

A Fuzzy Logic System (=: FLS) gives the ability to describe a system’s behavior in (formalized)
natural language. Thus, the statements – more precise: the set of rules – are rather imprecise
(“fuzzy”). Despite the vague formulations, there is a connection to spoken language, that approves
validity and usefulness in every day’s live. Figure 2.3 shows a generic FLS:

Figure 2.3: Fuzzy Logic System – Overview

Image Metadata:
Andreas Schwenk

1.0 / 2014-03-20
Author:
Revision:

Fuzzyfication Inference Defuzzification

Fuzzy Logic System (=: FLS)

[Real] World

x
1

x
2

…
x

N

10.17"

y
1

y
2

…
y

N1. 2. 3. 4.

The input set ~X of real world values (e.g. measurements) is transformed in the fuzzyfication-
stage into a degree of membership ∈ [0, 1]. This is performed for every Linguistic Term (=: LT) of
every Linguistic Variable (=: LV)4.

The next step – inference – aggregates the membership values of all linguistic terms for each
linguistic variable into a degree of truth (=: DoT). This is controlled by rules R in a formalized
natural language form; similar to an implication:

Ri := IF <premise p> THEN <conclusion c>. (2.3)

For example: “IF weather IS sunny︸ ︷︷ ︸
p1

AND forecast IS NOT(rain)︸ ︷︷ ︸
p2

THEN mood IS good︸ ︷︷ ︸
c1

”.

The aggregation for the set of premises p = {p1, p2, . . . } may e.g. be performed by a Min/Max
Aggregation. Then the Degree of Truth (DoT) for c1 would be min{µ1(x), µ2(x)} for the logical
‘and’ operation (or max{µ1(x), µ2(x)} for the logical ‘or’) and the activation sets the DoT for each
conclusion of each rule. Since the number of rules will mostly be ≥ 1, a subsequent accumulation,
i.e. a combination of all activations of all rules must be calculated.

Finally, the defuzzification is the inverse part of the fuzzyfication. It is done for each accumu-
lation result of the inference. The generated output Y is back in the (physical) domain of the real
world.

The advantage of fuzzy logic is the ability to represent unsharp knowledge in a (natural) form
that humans can understand. The membership functions and rules for a FLS may also be formulated
and / or adjusted by non-computer-scientists.

2.3.2 Artificial Neural Networks

Artificial Neural Networks (=: ANN) are derived from the biological information storage process,
i.e. is an abstraction of the (human) brain. A set of interconnected neurons, that each has some
storage elements (the weights), may model any non-linear function behavior. The complexity is
dependent on the number of neurons, that itself has mostly to be found empirically. Figure 2.4

4 A Linguistic Variable (=: LV) is a physical quantity. For example the LG “myMood” can be described with the
two Linguistic Terms (=: LT) “good” and ”bad”. We may define the following membership functions µ(x) for the
representation:

Image Metadata:
Andreas Schwenk

1.0 / 2014-03-20
Author:
Revision:

µ(x)

x

LV: myMood

LT: bad LT: good
1

0

13

Andreas Schwenk Chapter 2. Basics

shows a Multi Layer Perceptron (=: MLP) that is formally structured5 in layers and feed-forward
connections between each layer. The input and output layers are connected with the real world;
i.e. the embedding environment.

Figure 2.4: Multi Layer Perceptron (=: MLP)

Image Metadata:
Andreas Schwenk

1.0 / 2013-10-04
Author:
Revision:

[0,0]

[1,0]

[m,0]

[M
0
,0]

[0,1]

[1,1]

[m,1]

[M
1
,1]

[0,k]

[1,k]

[m,k]

[M
k
,k]

[0,K]

[k,K]

[M
K
,K]

...

...

...

...

...

...

...

...

Layer 0
:= Input Layer

Layer 1 Layer k Layer K
:= Output Layer

... ...

Each single artificial neuron [row, column] is further abstracted by nested functions:

Figure 2.5: A Single Neuron

Image Metadata:
Andreas Schwenk

1.0 / 2013-10-04
Author:
Revision:

k

Neuron kx
0
 := -1

x
1

x
2

x
3

 ...
x

N

y = f
out

(f
act

(f
net

(x)))

with x = (-1 x
1
 x

2
 x

3
 ... x

N
)T

For applications in this project we will always use weighted sum for the net-function, sigmoid for
the activation-function and identity for the output function6:

fnet(X) :=
N∑

n=0
xi · wi (2.4)

factivation := 1
1 + e−fnet

(2.5)

y := foutput := factivation (2.6)

An artificial neural network must be trained7 to get some valid output for a given input. This
can be done either manually or automatically. Training is the process that defines the weights by
numbers ∈ R. A widely used algorithm for automatic learning is the Backpropagation Learning
Algorithm; developed for Multi-Layer Perceptron networks (compare to figure 2.4) by David E.
Rumelhart [RHW86]. Such a training is done by given Training Set (=: TS). A training set is
defined as a tuple TS = (InputValues,OutputValues). Each training set is iteratively applied in a
given number of epochs8 to the system in- and output. The algorithm adjusts the weights until the

5Note that the interconnections of human brain have not such a feed-forward structure, but the abstraction here
simplifies further considerations. E.g. the back-propagation learning algorithm relies on a regular structure.

6See literature for more detailed explanations.
7The training of artificial neural networks is called supervised learning.
8The number of epochs within back propagation learning must be very high, and consequently the computing

14

Andreas Schwenk Chapter 2. Basics

remaining error is below a given threshold, i.e. the output is calculated by a given training set’s
input and is then compared to the estimated value.

2.3.2.1 Example

The following example anticipates an application of the real implementation in Java (developed for
this project) that will be presented in a later chapter. In this case, the logical AND-function is
applied to a MLP-network9.

Figure 2.6: Error Development as a Function of the Current Epoche

0

0.1

0.2

0.3

0.4

0.5

0.6

TS 1
TS 2
TS 3
TS 4
sum

epoche

er
ro

r

Image Metadata:
Andreas Schwenk

1.0 / 2013-10-06
Author:
Revision:

Table 2.1: ANN-Example: Real output

idx. input 1 input 2 expected real output ∆
0 0 0 0 0.0051 0.0051
1 0 1 0 0.0177 0.0177
2 1 0 0 0.0206 0.0206
3 1 1 1 0.9666 0.0334

Figure 2.7: Weights for the “AND-test”(η = 2.0, 150 epochs, α = 0.5)

Image Metadata:
Andreas Schwenk

1.0 / 2013-10-06
Author:
Revision:

[0,0]

[1,0]

[0,1]

[1,1]

[0,2]

[1,2]

[0,3]

Layer 0 Layer 1 Layer 2 Layer 3(=K)

4.969
3.363
3.350

-0.976
-2.241
-1.591

-4.168
-3.559
-7.245

1.538

1.358

1.879

-5.743

-2.421

-3.868

In the project we use Artificial Neural Networks to represent uncertainty that is inherently
given, as the user trains the system for being able to do Dependency Grammar Parsing.

power must be taken into account.
9The number of layers and the number of neurons per layer was found empirically. The ideal dimensionality is an

multi-criteria optimization problem with the objectives of a minimized number of needed epochs until convergence is
sufficient and simultaneously a minimized number of neurons. Furthermore, the applied internal parameters are set
to: Learning rate η = 2.0; momentum α = 0.5; 500 epochs.

15

Andreas Schwenk Chapter 2. Basics

2.4 Mathematical Notation
Some notations were especially defined for this work, and are briefly summarized in the following.
All other notation is derived from mathematics, theoretical computer science, as well as graph
theory. Refer e.g. to [EP08].

2.4.1 Phrases

A phrase p is represented as a (hierarchical) linked list, consisting of words w:

p := ` w1 → w2 → · · · → w|p| a
p := w1w2 . . . w|p|.

(2.7)

with |p| the length of the phrase, i.e. the number of its words. We also use |w| for the same purpose.
Any sequence of words in p can be declared as a fragment f . We restrict the set of fragments F
to { NP := Nominal Phrase, VP := Verbal Phrase }. If the fragment begins starting from word wi

and ends at word wi + k (included), we denote for a Nominal Phrase:

p := ` w1 → w2 → · · · → NP(wi → wi+1 → · · · → wi+k)) · · · → w|p| a
p := w1w2 . . .NP(wiwi+1 . . . wi+k)) . . . w|p|.

(2.8)

A property of a word w is expressed by a function on the word. E.g. the word-class of a word w is
represented as:

class(w) ∈ {Noun,Verb,Adjective, . . . } (2.9)

2.4.2 Grammar

A Grammar is represented by a graph G = (V,E), i.e. consists of a set of vertices (nodes) V =
{v1, v2, . . . , vn} and a set of edges E = {e1, e2, . . . , em}. G is a tree and therefore the number of
cycles is zero. For the number of vertices n and the number of edges m we have the constraint:

m = n+ 1 (2.10)

G is directed and for a Dependency Grammar, each edge e ∈ E is given as:

e = (v1, v2) ∈ E = (h, d) (2.11)

with h := head and d := dependent. The root node is characterized as: ∃e∈E : e = (h, d) ∧ eq(h, ∅);
with the predicate eq(x, y) := equals(x, y) := x = y. In case G is a Dependency Grammar10 the
number of words |w| := |p| is equal to the number of vertices n := |V |, i.e. each word wi is a vertex
ei.

10Phrase Structure Grammars are not considered in this work.

16

Andreas Schwenk Chapter 3. Conception

Chapter 3

Conception

A first subdivision of the entire system is to separate preprocessing and information extraction in
form of a pipeline structure. For former will gather unconsolidated data for each given phrase of
the input corpus, while the latter will build an ontology O.

Figure 3.1: Overview of the System

Unstructured
Text Sources

in Natural
Language

(I.) Preprocessing

Image Metadata:
Andreas Schwenk

1.0 / 2014-03-18
Author:
Revision:

1SDGT := Semanticized Dependency Grammar Trees

Input

Inter-
mediate
Result

SDGT
1

For
each text

Training
via GUI

Web

(II.) Information
Extraction

OutputSystem

Ontology O
(C,R,HC,A0)

We define the system boundaries, i.e. the set of inputs and outputs as depicted in figure 3.1.
Obviously, a set of unstructured English language texts is applied to the system. To enrich1 each
processed word with semantics, the preprocessing subcomponent retrieves information from the
web, e.g. Wiktionary and other sources. Some internal steps apply implicit rules that require
some manual supervised learning, so a training via the Graphical User Interface (=: GUI) can
be performed. Note that this only has to be done once, and may further be done subsequently
to decrease uncertainty, if necessary. The intermediate result, i.e. the output of the preprocessing
system, is represented as an extended form of a dependency grammar:

IntermediateResult := ∪Phrases : { DependencyGrammar ∪ Semantics ∪ FurtherInformation }

The next sections describe briefly the internal steps for the two main subcomponents. Complex
tasks are expounded in separate chapters.

1Annotate words with information.

17

Andreas Schwenk Chapter 3. Conception

3.1 Corpus Control
The corpus is applied via a set of local stored text files2 to the system. Each of the files may have a
hierarchical (tree-based) structure with an arbitrary depth3. The Entity Relationship Diagram (=:
ERD) depicted in figure 3.2 gives an overview of the construction. The first part “Preprocessing”
works on a phrase-base, i.e. each phrase is analyzed separately; while the second part “information
extraction” requires the analyzed data of the whole corpus.

Figure 3.2: Entity Relationship Diagram: Corpus Structure

Corpus R1 Article

[Sub]Chapter

Phrase

R2R3
1 root

1 n

1

1

n

- id : int
- text : String

- name : String

R4

- title : String

{R1,R2,...,R4} :=
 consists of

Image Metadata:
Andreas Schwenk

1.0 / 2014-03-18
Author:
Revision:

3.2 Preprocessing
“Preprocessing” is subdivided into a set of stages. Figure 3.3 shows a chain of functional blocks.
These mostly rely on previous steps and each enlarges the underlying data structures.

Figure 3.3: Overview of the Preprocessing Part

Lexer
Word

Classifi-
cation

Corpus :=
Unstructured
Texts in Natural
Language

(I.) Preprocessing
Syntactic and Semantic Analysis

1. 2.

Wiktio-
nary

Image Metadata:
Andreas Schwenk

2.0 / 2014-04-30
Author:
Revision:

DG3

Parsing

3.

Word-
Net1

1WordNet := a lexical Database (for English Lg.)
2BNC := British National Corpus
3DG := Dependency Grammar
4SDGT := Semanticized Dependency Grammar Tree

BNC2

4.

1. Sequence of ASCII Characters

2. Tokens

3. Semanticized Tokens

4. Grammar Tree with Semantics

Input Inter-
mediate
Result

SDGT
4

XMLXML
XML

F
o

r
ea

ch
 p

hr
as

e

Local
DB

Neuro-
Fuzzy

System

3.52"Web

Training
via GUI

Word
Frequency
Analysis

Lexeme
Synthesis

Semantic
Relation
Analysis

Google
Ngram

includes Fragment Phrase Analysis

Tempus
Extraction

2Format: ASCII-Code / UTF8.
3The structure is realized as follows: (1.) Each chapter starts with a headline that is introduced with a number of

repeating asterisks “∗”; the number represents the depth, i.e. “*” introduces the entire article; “**” is on a chapter
base; “***” is the depth of a subchapter etc. (2.) The text of the current chapter begins in the following line and
ends right before the next headline.

18

Andreas Schwenk Chapter 3. Conception

For run time optimization, i.e. faster access to web sources, as well as storing already analyzed
data, intermediate results – denoted as i© in picture 3.3 – are persistently output to XML-files.
Each data set encloses its predecessor (1 ⊆ 2 ⊆ 3 ⊆ 4) and may be briefly summarized as:

1. Sequence of ASCII Characters := Contains the text of a phrase on a character base.
2. Tokens := Word segmented list, consisting of words, numbers and punctuation characters.
3. Semanticized Tokens := Annotated words.
4. Grammar Tree with Semantics := Hierarchical grammar representation: (1.) Grammar on a

Fragment Phrase base (Nominal Phrases, Verbal Phrases) (2.) Grammar on a word base.

In summary, preprocessing does tokenization, word classification including fragment phrase anal-
ysis, lexeme synthesis, semantic relation analysis, word frequency analysis and meaning gathering
on a word base; while tempus detection operates on a phrase base. The order must be kept for
most blocks, since e.g. tempus extraction relies on word-classes etc. Chapter 4 describes most of
the preprocessing steps in detail. Since dependency grammar parsing is a non-trivial task, the
approach is described in separate chapter 5.

3.3 Information Extraction
The “Information Extraction” part uses the preprocessed data in form of a hierarchical Semanticized
Dependency Grammar Tree (=: SDGT) for each of the phrases of the corpus. SDGT is a tree-based
data structure that annotates all the gathered data to the underlying words resp. directly to the
phrase.

An overview is given in figure 3.4. Subroutines (a) – (c) build a first estimation of the output
ontology O′, while (

∑
) performs some post processing work, that e.g. unifies partial ontolgies from

the former steps and synthesis the output data in the Web Ontology Language (=: OWL) format.
The Word Frequency Analysis estimates the concepts C; Dependency Grammar Analysis estimates
the relations R; and the Hyeronym and Synonym Analysis estimates the Hierarchy of Concepts
HC.

Figure 3.4: Overview of the Information Extraction Part

(II.) Information Extraction

(b) DG-
Analysis2

(c) Hyperonym
and Synonym

Analysis

Intermediate
Result

SDGT
1

(a) Word
Frequency
Analysis

1SDGT := Semanticized Dependency Grammar Tree
2Breath-First-Search Dependency-Grammar Analysis

(∑)
Consolidation

and
Ontology
Synthesis

Output

Image Metadata:
Andreas Schwenk

1.1 / 2014-04-30
Author:
Revision:

Ontology O'
(C,R,HC,∅)

Refer to chapter 6 for detailed information on algorithms and data structures.

3.4 Graphical User Interface Design
User interaction and a content oriented presentation of information is realized with a custom
Graphical User Interface (=: GUI) – implemented in Java. While plenty of GUI-APIs exist,
this custom version is designed with a specialized focus on Natural Language Processing. This
way, most of the data is shown in form of lists and trees; each consisting of generic elements.

19

Andreas Schwenk Chapter 3. Conception

Each of these elements has the ability to display a text or a diagram, e.g. a word or probability
distributions. Visual scalability allows to observe certain details.

3.4.1 Corpus Management

Figure 3.5 displays the part of Corpus Management: All texts of the corpus, that are provided in the
UTF8-format and are placed in the input-directory on the disk, are listed. Each can individually
be processed to one of the states {A,B,C}:

• A performs word segmentation and synthesizes an XML-file containing tokens.
• B semanticizes all tokens that are of type word. Semanticization annotates all preprocessing
information to the word. Afterwards the above phrase-based processings are performed.
• C parses the dependency grammar.

Since preprocessing examines phrases, the hierarchical text structure can be browsed; and results
in a list of phrases. Selection of a single phrase switches the panel “phrase analysis” (see below).

Figure 3.5: Graphical User Interface: Hierarchy

3.4.2 Options

The most options in the panel in figure 3.6 are ontology referred and divided into calculation and
view actions. “Build Fuzzy Rules” is related to the Dependency Grammar Learning process. The
other choices start synthesis or show the parts of the ontology.

Figure 3.6: Graphical User Interface: Options

3.4.3 Phrase Analysis
Figure 3.7 shows the entirety of information for the currently selected phrase. Details are explained
in later chapters. A brief overview is given in table 3.1:

20

Andreas Schwenk Chapter 3. Conception

Table 3.1: Phrase Analysis GUI

Part Description
Dependency Grammar Only visible, if preprocessing state is C.
Words Tokenized phrase.
Fragments Subphrases ∈ {NP := Nominal Phrase,VP : Verbal Phrase}.
Lexeme Generic form of the current word.
Word Class List Estimated word class ∈ { Noun, Verb, Adjective . . . }.
Word Class Distribution Details for word class estimation: black colored values :=

Wiktionary estimation; red colored values :=
fragment analysis corrections.

Frequency (Word, Lexeme) Probablity that { (a) the word and (b) the lexeme }
occurs in the language statistically.

Semantic Relations Lists synonyms and hyperonyms for the current word.
Meanings Lists a set of meanings for the current word.
Extraction Information extraction. Gives first estimations for the ontology

in form of a semantic network.

Figure 3.7: Graphical User Interface: Phrase Analysis

This exposition is incomplete. Further windows and forms, will be presented in the appropriate
subchapters; e.g. windows related to ontology synthesis.

21

Andreas Schwenk Chapter 4. Preprocessing

Chapter 4

Preprocessing

Preprocessing comprises a Semantic and Syntactic Analysis of each a phrase p separately. This
chapter focuses on all preprecessing parts, except Dependency Grammar Parsing that will be dis-
cussed in a later chapter, to keep comprehensibility. Refer to figure 4.1 to get an overview of the
partial implementation.

Figure 4.1: Partial Preprocessing Steps

Lexer
Word

Classifi-
cation

(Partial) Preprocessing
Syntactic and Semantic Analysis

1. 2.

Wiktio-
nary

Image Metadata:
Andreas Schwenk

1.0 / 2014-04-25
Author:
Revision:

3.

Word-
Net1

1WordNet := a lexical Database (for English Lg.)
2BNC := British National Corpus

BNC2

1. Sequence of ASCII Characters

2. Tokens

3. Semanticized Tokens

Input

XML XML

F
o

r
ea

ch
 p

hr
as

e

Local
DB

3.52"Web

Word
Frequency
Analysis

Lexeme
Synthesis

Semantic
Relation
Analysis

Google
Ngram

Text ...Tempus
Extraction

includes Fragment Phrase Analysis

4.1 Lexical Analysis
Tokenization transforms the character-stream into a list of words. Equation 4.1 shows a Type–3
Grammar G(L3) (:= Regular Grammar) in EBNF1. We define a word wi := <Token>EBNF and
parse deterministically according to the rules. [Wir96] is a classical source for compiler construction,
and also describes the lexical analysis.

<UppercaseLetter> ::= “A” | “B” | “C” | . . . | “Z”.
<LowercaseLetter> ::= “a” | “b” | “c” | . . . | “z”.
<Digit> ::= “1” | “2” | . . . | “9”.
<Digit0> ::= “0” | <Digit>.
<Word> ::= [<UppercaseLetter>] { <LowercaseLetter> }.
<Number> ::= <Digit> { <Digit0> }.
<PunctuationCharacter> ::= “.” | “,” | “;” | “␣”.
<Token> ::= <Word> | <Number> | <PunctuationChar>.
<Text> ::= { <Token> }.

(4.1)

1EBNF := Extended Backus–Naur Form

22

Andreas Schwenk Chapter 4. Preprocessing

We finally get a phrase p := {w1, . . . , w|p|} that consists of a list of tokens2. Each subsequent
consideration in the following processing steps will be at a word-based granularity at minimum.

4.1.1 N-Grams

A post-processing step (with respect to Lexical Analysis) is a n-gram determination, i.e. a concate-
nation of n tokens to a contiguous sequence. We only consider 2-grams to e.g. combine the words
“because of” or “light year”. Implementation iterates over each word wi and checks, if there exists
a Wiktionary entry (more details on Wiktionary are given in the next section):

∃wk∈Wiktionary : equal(wk, concatenate(wi, wi+1)) → is2gram(wk). (4.2)

The Google Ngram-Viewer3 could be used for further observations of n-grams, but is not considered
here.

4.2 Syntactic and Semantic Analysis
For syntactic and semantic analysis we will consecutively retrieve information from several web-
sources. For a first estimation we restrict the focus on Wiktionary; a freely available content
dictionary. The structure for a word w provides (at least) the following data4:

<Meaning> := Text.
<Synonym> := Text.
<WordClass> := “Noun|Verb| . . . ” { <Meaning> } { <Synonym> }.
<English> := <Etymology> <Pronunciation> { <WordClass> }

<UsageNotes> <RelatedItems> .
<Language> := <English> |
<WikiEntry> := { <Language> }.

(4.3)

The base entry <WikiEntry> itself is a HTML-file5. Each file is parsed via a DOM-parser6 (refer
to [DOM]) and assembled into a hierarchical data structure, depicted in figure 4.2. We obtain the
needed information as shown in listing 4.1. This process is based on the assumption that each
Wiktionary Article has the following generic and hierarchically structure:

Figure 4.2: Wiktionary Entity Relationship Diagram (=: ERD)

WiktionaryArticle

WiktionaryListNode

WiktionaryTableNode

WiktionarySubchapterR1 R2

R3

R4

R5

R6

R1 := consists of
R2 := has subchapters
R3 := contains lists
R4 := contains tables
R5 := is parent of
R6 := is parent of

Image Metadata:
Andreas Schwenk

1.0 / 2013-10-04
Author:
Revision:

1 n 1
n

1

n

n
n

n
1

1

2We will call tokens (despite its original sense) as words in the next chapters; even if it is a punctuation mark etc.
3https://books.google.com/ngrams
4The website for a word w can be found via the concatenation http://en.wiktionary.org/wiki/ ◦ word .
5HTML := Hypertext Markup Language
6DOM := Document Object Model

23

https://books.google.com/ngrams
http://en.wiktionary.org/wiki/

Andreas Schwenk Chapter 4. Preprocessing

Listing 4.1: Wiktionary Parsing
1 program ExtractAnnotations(word w)
2 Article a = preparse(WiktionaryArticle(w))
3 for all Subchapters s of a do
4 i f headline(s) equals "English" then
5 for all following subordinated Subchapters s2 of s do
6 i f headline(s2) equals ("Noun"|"Verb"|...) then
7 extract each child-node n from List 0 of s2
8 (n each contains a unique meaning m)
9 else i f headline(s2) equals "Synonyms" then
10 extract each child-node n from List 0 of s2
11 (n each contains synonym s)
12 end i f
13 end for
14 end i f
15 end for
16 end program ExtractSemantics

In the following, we call an attributed word, i.e. a word w of a phrase p with additional in-
formation that extend w, a Semanticized Token (=: STk). Examples for attributes are e.g. the
wordclass class(w) or the lexeme lex(w).

4.2.1 Word Classification

Figure 4.3: English Word Classes

Image Metadata:
Andreas Schwenk

1.1 / 2013-10-11
Author:
Revision:

Noun Verb Determi-
native

Adjec-
tive

Adverb Prepo-
sition

Con-
junction

Inter-
jection

planet
star
Cologne

go
install
read

a
my
some

small
foolish
fast

soon
then
really

at
over
in

because
if
and

Numeral

one
two
thousand

oh
hmm
blah

The set of English word classes (also called “type of speech”) with examples for each class are
depicted in figure 4.3. In some cases we can determine the word class for a word wi by a simple
lookup to get an contravalent result:

class(wi) := Noun⊕Verb⊕ . . . (4.4)

Other words belong to more than one word class and are thus homonyms7. Determination of
class(wi) can not only rely on wi, since the size of the resulting set

class(wi) := {wc1,wc2, . . . ,wcN}, wci ∈ {Noun, Verb, Adjective, . . . } (4.5)

is greater than one (wc := word class), if eq(isHomonym(w), true).

4.2.1.1 First Estimation

A first approximation to solve homonymy is to involve the number of meanings for a word class
wci of a word wi given by a dictionary (here Wiktionary). Each wci is semantically defined with
respect to the word class as:

def (wci) := {m1,m2, . . . ,mM}, M := |def (wci)| (4.6)

with mi := the meaning, i.e. a phrase that equals a definition for w with respect to the word-
class wci. We define the Probability Mass Function (=: PMF) Pwc that shows the context-free8

7Homonyms are words that have different meanings, but the same spelling. Polysemes are polysemous homonyms:
Their origin is the same [Stu].

8Context-free := w is considered isolated.

24

Andreas Schwenk Chapter 4. Preprocessing

distribution of the probability of word classes for a word wi:

Pwc(wi) := [|def (wc1)| |def (wc2)| . . . |def (wcN)|] · 1∑
i |def (wci)|

(4.7)

The weight W := 1/ (
∑

i |def (wci)) | forces the sum of all values |def (wci)| to be one. In the
special case that the word class cannot be determined, i.e. there does no Wiktionary article exist,
we assume the word to be a noun; since the probability of being a proper noun is highest:

Pwc(wi) := [2 1 1 . . .] ·W (4.8)

Thus, p(Noun) has the highest value, but is set lower to one, since there is uncertainty.

Example: For the word “earth” we retrieve from Wiktionary9:

Pwc(earth) := [|def (Noun := {ProperNoun ∪Noun})| |def (Verb)|] ·W
= [10 4] · 1

10+4 = [0.714 0.286] (4.9)

The first word class estimation (=: est) is calculated by the frequency of usage10:

classest(wi) := max{Pwc(wi)} (=: ewc := estimated word class) (4.10)

Thus without considering the context, we estimate class(earth) := Noun and attribute the proba-
bility to be

p(class(earth)) := 0.714 =̂ 71.4% (4.11)

4.2.1.2 Refinement by Crisp Logic

The uncertainty of the word class of word wi may be reduced, if the context is considered and may
change the word class candidate that was estimated above. We restrict the context to a subphrase
(or fragment) f that is defined by the surrounding words of wi:

f := [wi−k wi−k+1 . . . wi−1 wi wi+1 . . . wi+l−1 wi+l] ⊆ p

:= [f0 f1 . . . f|f |]
(4.12)

The word class of wi can be interpreted as a crisp logic function11 of constraints, based on sur-
rounding words wi+j , j ∈ Z:

class(wi) :=
{

wc′i if ∀j∈Z : eq(ϕj(wi+j), φj)
wci otherwise

(4.13)

wc′i is the word class that is set, if the crisp logic function is true. ϕj is a function of a the
word wi+j and gets a property. The set of properties is listed in table 4.1. φj is a constant that
must match with the result of ϕ(w). Matching for a single word wi+j is tested by the predicate
eq(x, y) := equals(x, y) := x = y.

9def(ProperNoun) := { Our planet – third out from the Sun }. def(Noun) := { Soil, rock-based material, ground,
connection electrically to the earth, fox’s home of lair, world of our current life, one of the four basic elements, (India
and Japan) one of the five basic elements, (Taoism) one of the five basic elements }. def(Verb) := { to connect
electrically to the earth, to bury, to hide, to burrow }.

10We assume that the number of meanings for each word class correlates with the distribution in natural language
texts and thus, this strategy implies high uncertainties.

11Crisp Logic := Classic Logic.

25

Andreas Schwenk Chapter 4. Preprocessing

Table 4.1: Functions on a Word w

ϕ(w) Description
lex(w) Lexeme of word w.
lexType(w) Type of the lexeme of word w.
ewc(w) Estimated Word Class of word w that is determined by equa-

tion 4.10.

Listing 4.2 gives an example for a set of rules that are syntactically formulated in a custom script
language12, to handle the pattern matching. Each condition on the left-hand side represents a
fragment f that aims to match at arbitrary positions within a phrase p. The right-hand side
defines the word class for each of the words in the matched fragment; and thus is an extension to
equation 4.13, that itself determined only the word class for a single word. The entire fragment f is
moreover tagged to a type ∈ {NP,VP}, i.e. this script of crisp rules additionally detects Nominal-
(NP) and Verbal Phrases (VP). A more detailed view on Lexemes is given in the next subchapters.

Listing 4.2: Crisp Rules for Fragment Extraction and Word Class Refinement
1 [LEX=be LEXTYP=PresentParticiple EWC=Adverb] -> VP [Verb Verb Adverb].
2 [LEX=be LEXTYP=PresentParticiple] -> VP [Verb Verb].
3 [LEX=be LEXTYP=PastParticiple] -> VP [Verb Verb].
4 [LEX=have LEXTYP=PresentParticiple] -> VP [Verb Verb].
5 [LEX=have LEXTYP=PastSimple] -> VP [Verb Verb].
6 [EWC=Determinative EWC=Noun] -> NP [Determinative Noun].
7 [LEX=a EWC=Noun] -> NP [Determinative Noun].
8 [EWC=Adjective EWC=Noun] -> NP [Adjective Noun].
9 [EWC=Verb] -> VP [Verb].
10 [EWC=Noun] -> NP [Noun].

The script can be edited / extended via an usual text editor and is interpreted at run-time. A
regular language (L3) for parsing is sufficient and was implemented deterministically. Each rule is
tried to be applied on each possible phrase position in the given rule-order. Rules should be ordered
by descending length, i.e. by a decreasing number of words, since short rules would otherwise hide
the semantics of more complex rules. The described and implemented approach could indeed be
extended to use Fuzzy Logic. This is here omitted due to two reasons:

1. Complexity in implementation and adjustment (“overhead”).
2. Comparision of words to given word-constants (e.g. lexemes) can only be done with crisp

logic.

4.2.2 Lexeme Detection
Words wi were up to now treated, as parsed by the tokenizer. To distinguish the basic unit of
meaning from wi, we define the lexeme lex(wi), that extracts the generic form, i.e. it removes
declination endings from verbs, plural forms from nouns etc. Table 4.2 lists the set of lexemes that
the system is capable of extracting:

Table 4.2: Types of Lexemes (=: lextypes)

Lex.Type Description
Unchanged Either wi is not inflected, or the system could not detect that w is a lexeme.
Plural wi is a plural.
PresentParticiple class(wi) := Verb and wi is a present participle.
PastSimple class(wi) := Verb and wi is of type past simple.
PastParticiple class(wi) := Verb and wi is a past participle.
Irregular class(wi) := Verb with irregular inflection.

A first trivial step removes an apostrophed ending; e.g. “universe’s” is replaced by “universe”.
12Postulated for this project.

26

Andreas Schwenk Chapter 4. Preprocessing

Examination of Nouns: Nouns are solely investigated toward the plural lexeme type. A
first approach could be to remove the ending ‘s’ resp. ‘es’; but is not sufficient for many nouns,
especially those with foreign-language origin13. A more reliable approach is to use Wiktionary as
a dictionary. Since semantics – expressed by a set of meanings def (wci) – is already extracted for
usage in equation 4.7, one may reuse this information. Wiktionary generally includes the term
‘plural from of <lex(wi)>’ within one of the meanings mi. From this starting point, we derive the
algorithm to extract the plural-lexeme for a word w:

for(mi ∈ def (w, class(w) := Noun)) :
{ω} := words of meaning mi;
∃i∈N0 ∧ i<|ω|−3 : eq(ωi, “plural”) ∧ eq(ωi+1, “form”) ∧ eq(ωi+2, “of”)
→ lex(w) := ωi+3;

(4.14)

with ωi a list of words that outline the current meaning mi.

Examination of Verbs: Lexeme extraction for verbs is divided into three different approaches:

1. Manual programming.
2. Static irregular verb list.
3. Wiktionary bases extraction.

Manual programming relies on a lookup-table that has (at least) the entries listed in table 4.3

Table 4.3: Manual Lexeme Extraction for Verbs

w lex(w) lextype(w)
has have Irregular
had have PastParticiple
is be Irregular
as be PastSimple

An irregular verb list has been taken from [Irr14] and transformed to a CSV14-file. The layout may
be expressed by (Relational Database scheme):

(A, dt, I) := ({Present,PastSimple,PastParticiple}, {String, String, String}, ∅); (4.15)

The attributes Ai, with i ∈ {2, 3} define the lexeme type of w (lextype(w)). The lookup is imple-
mented as such in the first extraction method (manual programming).
Wiktionary based extraction for verbs is defined in equation 4.14. We denote a generic form for
the algorithms for verb-based lexemes in equation 4.16. Parameters are applied as defined in table
4.4.

for(mi ∈ def (w, class(w) := Verb)) :
{ω} := words of meaning mi;
∃i∈N0 ∧ i<|ω|−Φ : ∀j≥0 ∧ j<Φ : eq(ωi+j , φj) → lex(w) := ωi+Φ;

(4.16)

Φ is the number of words of the current pattern and φj is the current word of the current pattern.
Each pattern ϕi is executed separately.

13Example: Cosmos (Sg.,Ancient Greek). Removal of ‘s’ results in Cosmo which is a Scottish male name (variation
of the Italian Cosimo) and therefore the semantic is highly deferred [http://en.wiktionary.org/wiki/Cosmo].

14CSV := Comma-Seperated Values

27

http://en.wiktionary.org/wiki/Cosmo

Andreas Schwenk Chapter 4. Preprocessing

Table 4.4: Wiktionary based Lexeme Extraction for Verbs

Pattern ϕ := {φ1, φ1, . . . }, Φ := |ϕ| lextype(w)
[present tense of] Irregular
[simple present indicative form of] Irregular
[simple past tense of] PastSimple
[past participle of] PastParticiple
[present participle of] PresentParticiple

Literature: A general definition of lexemes can be found in [CM02].

4.2.3 Tempus Extraction

Classification of the tempus (lat., engl. <tense>) attributes a phrase with time information, e.g.
the time of happening. We rely on the two mechanisms Signal Words (temporal keywords) and
Lexeme Analysis to get an estimation. To simplify the process (and to reduce uncertainty), tenses
ti are restricted to the set { t1 :=Past, t2 :=Present, t3 :=Future }. For each phrase and tense ti
we define an indicator (:= counter) Ii. We iterate over the words and the appropriate indicator is
incremented, if a word of the phrase equals a temporal keyword kw(ti) (see table 4.5), or its lexeme
indicates the tense:

I1 := I2 := I3 := 0;
for(wi ∈ p) :
for(j ∈ {1, 2, 3}) :

Ij := Ij +
{

1, if wi ∈ kw(tj) ∨ correlation(lextype(wi), tj)
0 otherwise

tempusestimation(p) := max(I) ∈ {Past,Present,Future};

(4.17)

The predicate correlation(lextype, tense) is true, if the lexeme type draws inferences of the tempus;
e.g. “(lextype) PastSimple 7→ (ti) Past”.

Table 4.5: Temporal Keywords by Tense; taken from [Tem]

Keywords kw(ti) ti

{ yesterday, last week, last month, this morning, had, have, for, since, lately,
already, before, by the time, since }

t1 :=Past

{ always, usually, often, sometimes, seldom, rarely, never, every day, Mondays,
Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, Sundays }

t2 :=Present

{ will, going to, will have } t3 :=Future

4.2.4 Meanings

Wiktionary is used as a tool to extract meanings, since its parsing is a technical side product of
parsing the word classes (refer to equations 4.3 and 4.6). While meanings are related to word-classes
in Wiktionary and this distinction helps to deal with word class dependent homonyms, they are
persisted subordinately to word classes.

28

Andreas Schwenk Chapter 4. Preprocessing

4.3 Word Frequency
Over the entirety of English-Language texts, a word w has a certain probability to occur. Obviously
the inequality

∀w∈Corpus : frequency(eq(w, “a”)) > frequency(eq(w, “brobdingnagian”)) → true(?)

is fulfilled for most texts; with frequency(w), the number of occurrences of the word w in all texts
of the Corpus. We define the probability p(w) reciprocally:

p(w) := 1
frequency(w) (4.18)

As later discussed in chapter 6, the word frequency may be used to extract domain-specific words
– or more concrete – concepts C of an ontology O. While utilization is discussed in the mentioned
chapter, the focus here is on the determination of the frequency on a word basis. For each word w
one may distinguish (a) a frequency that w occurs in the examined corpus (in the following “local”)
and (b) the frequency that w occurs in all English texts (in the following “global”). The notation
is here:

flocal(w) :=
∑

w′∈C

{
1 if eq(w,w′)
0

(4.19)

with C := {t1, t2, . . . } the input texts, and {w′} the list of words from all input texts. Determi-
nation of fglobal(w) relies on external sources. Theoretically, all exiting textual sources have to
be involved; practically a preexisting databases can be used. These databases consist of a cross
section of all texts, i.e. a subset of text sources that is representative:

fglobal(w) := Query(DB ∈ {BNC, . . . }, w); (4.20)

The implementation mainly uses the BNC (see below) for global frequencies, as well as a small
database with 5000 entries for the most frequent words from [http://corpus.byu.edu/coca/].
The latter is used to reduce the number of queries to the BNC, and thus decreases run-time.

4.3.1 British National Corpus

The British National Corpus (=: BNC) is available at [http://www.natcorp.ox.ac.uk] and
consists of frequency data, based on a 100 million words corpus of (British) English texts. The
consolidation of the substantial number of words and interdisciplinarity implicitly converges the
error e(BNC, allLanuage)15 practically to zero, if texts and topics from the 20th century are consid-
ered16. The accuracy suffices for this project, since we assume that only a few contextfree-words17

are involved in the process of catchment in the use of language (in the context of natural science
texts, i.e. the focus of this project). This implicitly treats all words that are unknown to the BNC,
to be domain-specific, as the frequency from the BNC is zero (refer to chapter 6).

Offline access on the BNC is restricted to the United Kingdom18. Besides of this location limit,
the usage of an online access is freely19 available at [http://bncweb.lancs.ac.uk/]. The
URL may be modified20 to directly receive the needed frequency information. E.g. query of w :=
“earth” delivers the result:

15The error e is the overall difference between the word-frequencies gained by the BNC, compared to the theoreti-
cally word-frequencies from all existing texts.

16[Bri14] states that the BNC-corpus “was completed in 1994”.
17Here: Context-free := Word w is not part of the examined knowledge domain.
18University of Oxford Text Archive: http://www.ota.ox.ac.uk/desc/2554.
19A registration is needed, but free of charge.
20Please consider the source code of this project for details.

29

http://corpus.byu.edu/coca/
http://www.natcorp.ox.ac.uk
http://bncweb.lancs.ac.uk/
http://www.ota.ox.ac.uk/desc/2554

Andreas Schwenk Chapter 4. Preprocessing

Table 4.6: BNC Example for w := “earth”

Query Result
http://bncweb.lancs.ac.uk/cgi-binbncXML/ Your query “earth” returned 9194 hits in 1690
processQuery.pl?theData=earth&chunk=. . . different texts (98,313,429 words [4,048 texts];

frequency: 93.52 instances per million words)

This resulting phrase has to be parsed by a regular language interpreter (Type-3 language L3).
Only a subset of frequency information F is used at this point; expressed by the tuple:

F ′ := (w, pglobal(w)) ⊂ F (4.21)

For the word w := earth, an example instance is given as:

F ′example := (earth , 9194/98313429 ≈ 0.00009352) (4.22)

For further information about word frequencies one may consult [AG05].

4.4 Extraction of Semantic Relations
Examples for Semantic Relations [Stu] are e.g. Synonyms (=: syn), Antonyms, Hyperonyms (=:
hyp), Hyponyms and Meronyms. To get a set of relations for a word w we denote in this work:

W := hyp(w) := Hyperonyms of w, W := syn(w) := Synonyms of w, . . . (4.23)

with W , a set of words wi. Semantic relations are used in the process of information extraction, as
described in chapter 6. Only synonyms and hyperonyms are considered here. While the former may
be applied to reduce redundancy, the latter is a basic tool to find hierarchies of concepts (HC ∈ O).

4.4.1 Synonyms

A synonym can formally be defined as:

eq(semantics(w1), semantics(w2)) → w2 ∈ syn(w1) ⇔ w1 ∈ syn(w2) (4.24)

Note that eq (:= equals) is sometimes interpreted like “highly correlates”, i.e. the meaning of w1
and w2 matches not exactly. Wiktionary is used as a tool to extract synonyms, since parsing of
synonyms is technically similar to parsing meanings (refer to equation 4.3). While synonyms are
distinguished by word-classes in Wiktionary, we combine synonyms to a single set here. A further
post-processing step must be applied to keep only the significant information. We restrict this to
the removal of all parenthesized character sequences as well as omission of special characters. E.g.:

postprocess(“(to connect electrically to the earth): (US) ground”) := “ground”
→ syn(earth) := {ground, . . . }

4.4.2 Hyperonyms

WordNet, a lexical semantic database (developed at Princton University; refer to [Wor14]), groups
words in so-called synsets, i.e. sets of synonyms and semantic relations. We concentrate on the
ability to get hyperonyms21 hyp(w) for a given word w. WordNet can be used offline by a Java-
interface. Determination of hyperonyms can be done as follows: (a) Create a synset for w with
synset-type “Noun”22 (b) Iterate over the synset, each retrieve the hyperonyms and (c) Finally

21alt. »hypernyms«; often abbreviated to hr(w).
22Only nouns are considered here. This restriction will be more clear in chapter 6.

30

Andreas Schwenk Chapter 4. Preprocessing

unify the partial hyperonymous solutions. As defined in the first chapter, a hyperonym has the
form:

isKindOf (w1, w2) → w2 ∈ hyp(w1) ⇒ < w1, w2 > (4.25)

i.e. we have a hyperonomial relation between the two words w1 and w2, if w1 is kind of a w2. Then
w2 is a hyperonym of w1. An example is

star := hyp(sun)

We will later on substitute words wi by concepts ci ∈ C ⊂ O.

Figure 4.4: Example Query for WordNet Entry »sun«

4.5 Data Modeling
Figure 4.5 depicts the entire ERD for a preprocessed phrase. Note that the Dependency Gram-
mar part is discussed in detail in the next chapter. We treat relations between fragments and
semanticized tokens only with indices; therefore there is no relation depicted (see dotted arrow)23.

Figure 4.5: Entity Relationship Diagram: Phrase

{ R1,R2 } :=
 syntactically
 described by

R3 := set of poly-
 semous definitions
 given by

R4 := frequency

R5 := consists of

R6 := described by

R7 := segmented into

Image Metadata:
Andreas Schwenk

2.5 / 2014-04-28
Author:
Revision:

SemanticizedToken

1

n - wordClassProbabilitiy
 Distribution : double[]
- wordClassEstimation
 Wiki : WordClass
- wordClassFullEstimation
- synonyms : String[]WK

- hypernyms : String[]WN

- ...

R2

Data Sources := { WNWordNet, WKWiktionary, BNCBritish National Corpus }

Frequency

- wordFrequency : doubleBNC

- lexemeFrequency : doubleBNC

R4

1

1

Preprocessed
Phrase

- id : int
- text : String
- tempus : Tempus
 ∈ { Past, Present, Future }

Dependency
Grammer

R5

<see below>

1 n

*

*

Lexeme
1

- type : LexemeType
- lexeme : String

R7

Meaning

- text : StringWK

R3

Semanticized
WordClass

- wordClass : WordClassWK

 ∈ { N:=Noun, V:=Verb, … }

R6

1

n

- type : TokenType
- number : long
- word : String

1

n

1R7

TextTokenR1

Fragment
Phrase

- type : FragmentType ∈ { NP, VP }
- beginIndex, endIndex : int
- text : String

n

1

23This avoids the management of further lists in the data structure.

31

Andreas Schwenk Chapter 5. Dependency Grammar Parsing

Chapter 5

Dependency Grammar Parsing

5.1 Introduction
The extraction of the relations Rp of a phrase p for the domain-specific ontology OD (with R ∈ OD)
will be primary based on the Dependency Grammar. In this section we describe a possible process
to extract the dependency grammar; input-restricted to the information that are gathered in the
process of preprocessing of the last chapter. The main intention is to research the possibility to
parse the dependency grammar (only) with methods from Computational Intelligence. Secondary,
the amount of external dependencies is kept low, i.e. no specialized dependency databases are used.
Thus, the simplicity improves run-time. The accuracy is expected to be less than that of specialized
implementations (e.g. compare to link grammar e.g. described in [Lin14]). A detailed evaluation
can be found in the conclusion of this report.

5.1.1 Classical Approaches

Classical approaches make use of large databases, so called Treebanks. Treebanks consist of a text
corpus that is annotated (mostly manual, i.e. by humans) with syntactic and semantic informa-
tion. The drawback of Treebanks is (generally) the dependency on licensed work, i.e. fees must
be paid for the use. Syntactic Treebanks1 are subdivided into the underlying type of grammar;
mainly phrase structure grammar and dependency grammar2. [Wik14b] lists some of the available
Treebanks. Filtering3 restricts the set to { “Prague English Dependency Treebank”, “The PARC
700 Dependency Bank”, “CHILDES Brown Eve corpus with dependency annotation” }; whereas
only the latter is under the terms of Open Source and thus available for free of charge. Despite
the availability, the intention of this work is to research alternative approaches that waive official
Treebanks.

5.1.2 A New Neuro-Fuzzy-Approach

As already introduced, Dependency Grammar Parsing relies on the information whether a linking
between two given words of a phrase exists: The significant word is called head, while the other is
called the dependent. Treebanks provide relational information for a given input data – or more
exact: for a given set of words in their syntactic and semantic relation within a phrase. We later
describe that the decision, weather two words are linked together or not, is not depending on the
concrete words itself in this work. The dependency is contextual, i.e. it relies on the word-class,
the position etc. To fulfill the the necessity of learning this linking; we make use of the following
techniques: In a preceding chapter we introduced both Artificial Neural Networks (=: ANN) and
Fuzzy Logic (=: FL). For dependency grammar parsing, we aim at a collaboration of the benefits of
both approaches (The purpose of Neuro-Fuzzy in general was first described by J.-S. Roger Jang):

1Dependency Grammar Parsing is a syntactic subject matter.
2Implicitly, the natural language itself is a further subdivision.
3Only consider English language and Dependency Grammar based Treebanks.

32

Andreas Schwenk Chapter 5. Dependency Grammar Parsing

• The ANN is used to learn and store uncertain knowledge, based on a below described scheme.
Uncertainty can be explained by an arbitrary and variable amount of information provided
by the user4.
• The FL represents a human-readable set of rules. In contrast, the ANN can be seen as a
black box. Transforming the neuronal data via a bypass to synthetic Fuzzy rules improves
comprehensibility and maintenance of the system.

The combination of both approaches to a hybrid system is, to use the backpropagation learning
algorithm and to represent the learned data to a readable form that optionally can be adjusted by
hand.

5.1.3 Mathematical Representation

To keep the representation-homogeneity of the constructed algorithms, we introduce the following
mathematical notation: If word w2 is linked to w1, i.e. w1 is the head and and w2 is a dependent
of w1, we denote:

head(w2) := w1 ⇒ w2 ∈ dependent(w1) (5.1)

One word could have more than one dependent. The “quality of link” between two words w1 and
w2 is written as:

eq(head(w2), w1) → link(w1, w2) ∈ (0, 1]
eq(head(w2), w1) → link(w1, w2) := 0 (5.2)

with eq(,) := equals(,). Thus, the value of link is zero, if there is no dependency between the two
words; otherwise the amount of link is positive5.

5.2 Design

5.2.1 System Integration

Figure 5.1 recapitulates the overview of preprocessing (truncated for the Neuro-Fuzzy related com-
ponents) with additional details on the Neuro-Fuzzy part:

Figure 5.1: Neuro-Fuzzy System Integration

Syntactic and Semantic
Analysis

Corpus :=
Unstructured
Texts in Natural
Language

(I.) Preprocessing
Syntactic and Semantic Analysis

Image Metadata:
Andreas Schwenk

1.0 / 2014-04-23
Author:
Revision:

DG1

Parsing
3. 4.

3. Semanticized Tokens

4. Grammar Tree with
Semantics

Input Inter-
mediate
Result

SDGT
2

XML

F
o

r
ea

ch te
xt

Training
via GUI

Macro
ANN3

Macro
FLS5

Neuro-Fuzzy System

XML

1DG := Dependency Grammar 2SDGT := Semanticized Dependency Grammar Tree
3ANN := Artificial Neural Network 4FRS := Fuzzy Rule Synthesis
5FLS := Fuzzy Logic System

FRS4

switch

XML := Training Sets

Micro
ANN3

Micro
FLS5FRS4

4The user decides which phrases are examined and then synthesizes himself (partial) link-information that will
result in training-sets.

5In contrast to this definition, the GUI will later on use a different scaling ∈ [0, 1]. The interpretation will be:
[0, 0.5)→»bad link«; [0.5, 1]→»good link«.

33

Andreas Schwenk Chapter 5. Dependency Grammar Parsing

Accordingly, the intermediate XML-databases – in form of tokens with semantics for each phrase p
– are laid to the Graphical User Interface (=: GUI) as requested: The user retrieves an input and
a feedback that is specified in the next subsection. The Neuro-Fuzzy-sequence is subdivided into:

1. Particular6 Training-sets are manually generated and then stored into files in the XML format.
Training the Artificial Neural Network is done via the Backpropagation Learning Algorithm
and may include all previous training sets from previous runs. We distinguish a training on
a »macro« and a »micro« basis (see below).

2. The Fuzzy Rule Synthesis (=: FRS) component transforms the uncertain data into human-
readable and thus NLP-based fuzzy rules.

3. Updating is finally done via “closing the switch” (refer to figure 5.1) and implies substitution
of (possibly existing) previous fuzzy rules.

4. Determination of link(w1, w2) is finally done by the Fuzzy Logic System (=: FLS).

5.2.2 Training

Figure 5.2 illustrates the Graphical User Interface (=: GUI) for training. A single phrase, including
the word classes and fragment types, is each depicted. Since the goal is a hierarchical parsing of
the dependency grammar; each a training on the word base and the fragment base is possible.
Hierarchical parsing has the benefit to implicitly simplify the process by considering different types
of granularity:

1. Micro Dependency Grammar Learning (=: Micro-DGL):
Determines the link for each two words w1 and w2:

link(w1, w2) (5.3)

For the example phrase, one may link the two words (“the earth”) to 1.0 (» good« link), i.e.

link(earth︸ ︷︷ ︸
Noun

, the︸︷︷︸
Det

) := 1.0 ⇔ the ← earth (5.4)

This is valid, since “earth” is the head and “the” a (here: the only) dependent.

2. Macro Dependency Grammar Learning (=: Macro-DGL):
The Macro-DGL is based on phrase fragments fi:

link(f1, f2) (5.5)

For the example phrase, one may e.g. link:

link(VP(is), NP(the earth)) := 1.0 ⇔ the earth ← is (5.6)

This is valid, since “is” is the head and “the earth” the dependent7.

6The user may choose which phrases should be used for training. It is also possible to only train subphrases.
7The set of examples above can be treated as positives, since the link is always set to 1.0. Effectiveness in

determining the link within the later described parsing process can only be learned, if also lower link-values of less
that one (link < 1) are provided. We define {1.0, 0.5, 0} 7→ {»good«,»neutral«,»bad«}. A »bad« case would e.g. to
set a verb to be the dependent and a “linked” noun to be the head.

34

Andreas Schwenk Chapter 5. Dependency Grammar Parsing

5.2.3 Graphical User Interface

Figure 5.2 shows the training in progress:

Figure 5.2: Graphical User Interface for Dependency Grammar Learning

Table 5.1: Dependency Grammar Learning – GUI Options

Panel Description
Phrase List of words. The selection is described in the info panel.
Word Class Word class of each word.
Fragment Nominal and Verbal Phrases.
Link Rating {1.0, . . . , 0.5, . . . , 0} 7→ { »good«, . . . , »neutral«, . . . , »bad« }.
Training Creates a training set; based on the current selection.
{Micro,Macro}-Tree Feedback of the learning process. Top-Down arrows indicate a

»good« link. Bottom-Up arrows indicate a »bad« link.
Export Writes training data to XML files (refer to listings 5.1 and 5.2).
Log Logging information.

35

Andreas Schwenk Chapter 5. Dependency Grammar Parsing

Listings 5.1 and 5.2 show the export-format for each a micro and macro dependency training
example.

Listing 5.1: Micro-DG Training Set Example
1 <TS index="3">
2 <Type t="Micro"/>
3 <Phrase text="The earth is a planet."/>
4 <WordClasses wc="Determinative Noun Verb Preposition Noun Period"/>
5 <Data parentIndex="1" parentName="earth" childIndex="0" childName="the" link

="1.0"/>
6 <TimeStamp ts="Thu Jan 30 00:32:57 CET 2014"/>
7 </TS>

Listing 5.2: Macro-DG Training Set Example
1 <TS index="4">
2 <Type t="Macro"/>
3 <Phrase text="[The earth] [is] [a planet][.]"/>
4 <WordClasses wc="Noun Verb Noun Period"/>
5 <Data parentIndex="1" parentName="[is]" childIndex="0" childName="[The earth

]" link="1.0"/>
6 <TimeStamp ts="Thu Jan 30 00:32:48 CET 2014"/>
7 </TS>

5.3 Algorithm

5.3.1 Artificial Neural Networks for Supervised Learning

Within the training-set generation via the Graphical User Interface, we can gather structured data
for link information on a word and/or fragment basis. The next step is to transform the data range,
to provide the information to the neurons of the input layer of the ANN:

LinkData 7→ InputData(ANN) ⊆ RM0 , R = [0, 1] ∈ R (5.7)

with M0 the number of input neurons and R (6= R), the input vector with M0 elements that are
each restricted to [0, 1] ∈ R (note8). As a design decision, we chose not to learn explicit words
(respectively phrase fragments), but rather we learn the environmental data for each atom9 =: its
context. The context is described by:

• Atom-type := class of the dependent:
Map the word-class resp. the type of the fragment phrase10 ∈ {NP,VP} to [0, 1] ∈ R:

x′1 := ordinal(class(wi) ∈ {Noun,Verb, . . . })− 1 ∈ {0, 1, . . . } ∈ N0
x1 := x′1 / max{X ′1} ∈ [0, 1] ∈ R (5.8)

max{X ′1} is here set to 10. For the fragment consideration, “class(wi)” must be changed
accordingly: All word classes in the phrase that could not be tagged to {VP,NP} are kept
from the micro system.

• Relative position between head and dependent:
The position for each word wi in a phrase can be measured from left to right:

pos(wi) ∈ [0, |p| − 1] ∈ N0 (5.9)

The relative position between the head and the dependent is thus:

pos′rel. := pos(wdependent)− pos(whead) ∈ [−|p|+ 1, |p| − 1] ∈ N0 (5.10)
8Refer to the introduction to ANNs. The used internal functions – especially the activation function sigmoid –

only have range [0, 1] ∈ R.
9Atom for Macro-Parsing =: Word; Atom for Micro-Parsing =: Phrase-Fragment.

10We internally represent {NP,VP} as {Noun,Verb}.

36

Andreas Schwenk Chapter 5. Dependency Grammar Parsing

pos′rel. must be normalized to keep the bounds in the range [0, 1]:

x2 := posrel. := median
(
−1, pos′rel.

scalingfactor , 1
)

︸ ︷︷ ︸
∈[−1,1]∈R

·0.5 + 1 (5.11)

The scaling factor is empirically chosen to be 10; cases with |posrel.| > 10 are treated as 10.

• Type of the atom’s parent := type of the head:
Refer to the calculation of “Atom-type” and replace wi with wj

11. The destination variable
is x3.

We finally get a tuple TS := (X,Y) := ({x1, x2, x3}, y1) for the training set.

5.3.1.1 Determining the Dimensionality of the ANN

Figure 5.3: Structure of the ANN

[0,0]

[1,0]

[2,0]

[0,1]

[1,1]

[m,1]

[M
1
,1]

[0,k]

[1,k]

[m,k]

[M
k
,k]

[0,K]...

...

...

...

Layer 0
(Input)

Layer 1 Layer k Layer K
(Output)

... ...

x
1

x
2

x
3

y
1

Image Metadata:
Andreas Schwenk

1.0 / 2014-04-23
Author:
Revision:

type(atom)

relativePosition

type(parent(atom))

link

The set X := {x1, x2, x3} represents the values for the input-neurons of the ANN and Y := {y1 :=
link} is the output. Refer to figure 5.3 to get a schematic overview. Some generic variables are not
yet covered:

• K + 1 := the number of layers (Layers are indexed with [0,K] ∈ N0).
• {M1,M2, . . . ,MK−1} := the number of neurons per hidden layer.

Since Backpropagation Learning is applied, the number of needed neurons cannot be derived in
a trivial manner (Compare e.g. to [LGT96]). Instead of a mathematical estimation, we postulate
the following iterative algorithm to increase the dimensionality up to a level where the remaining
error (:= the difference between the real link value and the link value that the ANN calculates) is
below a given threshold. Note that this procedure is of empirical nature. We define H := K − 1,
the number of hidden layers, that is all layers that are neither an input layer nor an output layer:

(1.) H := 1; ∀i : Mi := 3;
(2.) do :

error := Perform Backpropagation learning with Training Set Data TS ;
∀i : Mi := Mi + 1;
if (M1 > T1) then :
∀i : Mi := 3; H := H + 1 (→ |M | := |M |+ 1);

end if;
while (error < T2);

(5.12)

11eq(head(wi),wj) must be fulfilled.

37

Andreas Schwenk Chapter 5. Dependency Grammar Parsing

The two thresholds may e.g. be set to {T1, T2} := {8, 0.01}. In this case, we start with one hidden
layer that consists of initially three neurons. As long as the total error is greater or equal to 0.01,
the number of neurons per hidden layer is incremented. The choice of the value 0.01 is sufficient,
since the link must not be very precise and in addition, we get a relaxation for uncertain training
sets. The latter may occur, if the user produces contradictory training data. The number of hidden
layers is incremented, when 8 neurons per hidden layers are not sufficient; additionally a reset of
neurons per hidden layer is done, i.e. set to 3. Remark12.

Furthermore should the network size be bounded. There may exist data that does not causes
a learning-convergence within reasonable time. The training set-XML-files should be reviewed and
adjusted as a work-around.

5.3.2 Fuzzy Logic to Clarify the Parsing Behavior with Natural Language Rules

To ease the handling of Fuzzy Logic, a Fuzzy Logic Editor (=: FLE) and the underlying Fuzzy
Logic System (=: FLS) were implemented in Java. Figure 5.4 shows an example Screenshot.

Figure 5.4: Fuzzy Logic Editor – Screenshot

The usage is more or less self-explaining: One may create a set of Linguistic Variables (=: LVs)
and relating Linguistic Terms (=: LTs). Preferences remain as set (refer to [Bar13] for meanings)
and the synthesis of rules is described below.

12 Starting with a high dimensionality is not an option, since the amount of calculations does not increase linearly.
Weights w are adjusted as follows:

∀epochs e
: ∀trainingSets ts

: ∀layers l
: ∀neuronsInLayer n

: ∀inputs i : adjust wn,l,i (5.13)

38

Andreas Schwenk Chapter 5. Dependency Grammar Parsing

5.3.2.1 Define the Linguistic Variables

Definition of the Linguistic Variables (=: LVs) requires to represent all the information from the
ANN. Table 5.2 summarizes the LVs briefly13.

Table 5.2: Linguistic Variables LV ∈ FLS

LV type(LV) LTs type(LT)
noun∗ input {low,high} {Sigmoid(10,0.3), Sigmoid(-10,0.7)}
nounParent∗ input {low,high} {Sigmoid(10,0.3), Sigmoid(-10,0.7)}
position input {positiveSmall, {Trapezoidal(-1,-1,5,15),

positiveLarge} Trapezoidal(0,15,40,100)}
relPosition input {NS,PS,Z,PL,NL,P} {Trapezoidal(. . .)}
link output {low,medium,high} {Singleton(0.0),Sglt.(0.5),Sglt.(1.0)}

5.3.2.2 Integration of the FLE

The Fuzzy Logic Editor is associated with the ontology extraction system by an XML-structured
file. This way, the editor can be kept as an independent component. Listing B.1 in the appendix
shows an excerpt of an export of the preferences. The final task of the FLS is given as:

link(w1, w2) := FLS(~vin)
~vin := ~vin,1 ∪ ~vin,2 ∪ ~vin,3
~vin,1 := { p(class(w1),Noun), p(class(w1),Verb), . . . }
~vin,2 := { p(class(w2),Noun), p(class(w2),Verb), . . . }
~vin,3 := {relativePosition(w1, w2)}

(5.14)

p(class(wi),<WordClass>) is the probability ∈ [0, 1] ∈ R that the word-class of word wi is equal
to <WordClass>. Please refer to the chapter about preprocessing, form further information about
the probability of word-classes.

Example: If the link(earth,the) for the phrase p := ` The → earth → is → a → planet a
should be determined, the following (partial defined) input vector ~vin for the FLS would ideally be
constructed14:

Table 5.3: Example Input-Vector for the FLS

LV-input Example-value
p(class(the),Det) 1
p(class(earth),Noun) 0.8
p(class(earth),Verb) 0.2
relativePosition 1

Assuming that fuzzy rules would already exist, the FLS would calculate the output link to a value
of e.g. 0.85; i.e. the dependency The ← earth is treated to be true for 85 %.

13 Legend: relPosition := relative position, NS := negative small, PS := positive small, PL := positive large, NL
:= negative large, P := positive. Sigmoid(x, a, b) is defined as 1.0

1.0+ea·(x−b)) .
Trapezoidal(x, a, b, c, d) is defined as x ≥ a? x−a

b−a
: (x ≥ b ∧ x ≤ c?1 : (x ≥ c ∧ x ≤ d?1− x−c

d−c
: 0)).

Singleton(x, a) is defined as x = a?1 : 0.
Example curves for Sigmoid can be observed in figure 5.4. Each LV that is in table 5.2 attributed with “*”, can be
copied for all other word-classes with unaltered definitions.

14All non-given values are assumed to be zero. The word “earth” is a homonym and has different word-classes.
Semantics can be defined as: (a) “Earth” as a noun, e.g. earth := ground. (b) “Earth” as a verb, e.g. to earth an
electrical circuit.

39

Andreas Schwenk Chapter 5. Dependency Grammar Parsing

5.3.3 Synthesis of the Fuzzy Rules from the Neuronal Data

The last subsections described, how the ANN is used for knowledge representation of uncertain
knowledge for dependency training-sets; and how the FLS can be used to calculate the link, given
an input vector. Now we describe the core of the FLS: A set of fuzzy-rules is used to describe
the internal calculation with natural language rules. The regular structure of such a rule Ri was
introduced in the basic-chapter:

Ri := IF <premise p> THEN <conclusion c>. (5.15)

Listing 5.3 shows some examples for manually formulated rules:

Listing 5.3: Example Fuzzy Rules
1 IF det IS high AND nounParent IS high AND relativePosition IS negativeSmall

THEN link IS high.
2 IF det IS high AND nounParent IS high AND relativePosition IS positive THEN

link IS low.
3 IF det IS high AND nounParent IS low THEN link IS low.

The first line can be translated into “If the word (here: the dependent) is to a high probability
of the word-class ‘determiner’, and the head is likely to be a ‘noun’ with a high probability, and the
relative position between head and dependent is ‘negative-small’ (:= not much below zero); then
link(head,dependent) is high”. Compare this formulation to the last example (“The earth”).

Despite a manually formulation of all rules is possible, this would be a time-consuming task for
all combinations of word-classes and relative positions. We now use the trained ANN to synthesize
these rules and write them into a XML-file. A further fine-tuning in form of a manual post-
processing step would be possible; since the human-readable set of fuzzy rules is highly in contrast
to the black-box-like ANN. The trained ANN can be stimulated with a sequence of combinations
of X := {x1, x2, x3} to force a calculation of the link y1:

for (wcp ∈ {Noun,Verb,Adjective, . . . }) :
for (wci ∈ {Noun,Verb,Adjective, . . . }) :

for (relpos ∈ {−5,−2, 2, 5}) :
y1 := ANN(x1 := convert1(wcp), x2 := convert1(wci), x3 := convert1(relpos));
Rule r := IF wcp IS high AND wci IS low AND rel.Pos IS relpos

THEN link IS convert2(y1);
end for;

end for;
end for;

(5.16)
with wcp the current parent word-class (:= head) and wci the current child word-class (:= depen-
dent). The conversion functions {convert1, convert2} transform the values either to the ANN or
FLS representation. This generation procedure has to be done for each the Micro and Macro part.

Figure 5.5 shows an example training process. The depicted Macro-ANN is quiet small, due to
a very low amount of training data:

40

Andreas Schwenk Chapter 5. Dependency Grammar Parsing

Figure 5.5: Graphical User Interface for Fuzzy Rule Synthesis

5.3.4 Build the Grammar Tree

Given the ability to calculate link(w1, w2) for every two words w1 and w2 (resp. to calculate the
link for any two fragments f1 and f2), we have to decide how the parsing process is structured.
[Cov01] describes several approaches. Some ideas have been taken from this source to derive the
following – adjusted – algorithm:

The idea is to generate a graph G = (V,E) that is a tree T = G, i.e. no cycles in G exist. We
distinguish two steps:

1. Find the root node vroot ∈ V . The root node is a word w that fulfills eq(class(w),Verb), since
the main verb is significant in Dependency Grammar.

2. Recursively extend the previous tree T : mount all other words wd to each a parent node with
the constraint: ∀wd∈p : maxValue := max{link(wh, wd),maxValue}, with wd an unprocessed
node (word of phrase p; a dependent =: d) as a link candidate and wh a potential parent node
(head =: h). An edge e := (wh, wd) ∈ E is added to T , in case eq(link(wh, wd),maxValue).15

More precisely, we denote the complete algorithm as follows:

(1.) G = (V,E) := ({w1, . . . , w|p|}, ∅);
(2.) ε := GF (2)|p| := [0 0 . . . 0], |ε| := |p|;
(3.) ∃r∈[1,|p|] : eq(link(∅, wr), max{ link(∅, w1), link(∅, w2), . . . , link(∅, w|p|)})

∧ eq(class(wr),Verb); εr := 1;
(4.) L|p|×|p| with li,j ∈ L ∈ R ({i, j} ∈ N ∧ {i, j} ≤ |p|);
(5.) while (∃i∈[1,|ε|] : eq(εi, 0)) :
(5.1) for (d ∈ [1, |p|]) :

for (h ∈ [1, |p|] ∧ eq(εh, 0)) :

lh,d :=

link(wh, wd) if

{
(d < h ∨ d > maxCP(wh ∈ V)) ∧
(d > h ∨ d < minCP(wh ∈ V))

}
−1 otherwise;

end for;
end for;

(5.2) M := max{lh,d}, with h ∈ [1, |p|] ∧ eq(εh, 1), d ∈ [1, |p|] ∧ eq(εd, 0);
(5.3) e := (h(M), d(M));

E := E ∪ {e};
εh := εd := 1;

end while;
(6.) |V | := |E|+ 1, i.e. G is a tree;

(5.17)

15eq(x, y) is the predicate equals(x, y) := x = y.

41

Andreas Schwenk Chapter 5. Dependency Grammar Parsing

For simplicity reasons, all indices of p are ∈ [1, |p|] ∈ N. The implementation requires to transform
the range to [0, |p| − 1] ∈ N0. Furthermore h := head index and d := dependent index.
maxC idx(vi) := maximum index of all child-nodes of node vi: Step (5.1) enforces the graph to
be “visually planar”. ε := List of already processed words w of a phrase p (A Galois field with
elements ∈ {0, 1}). |p| := number of words in the phrase. L := link-matrix. Predicate eq(x, y) :=
equals(x, y) := x = y.

Hierarchical Parsing: Hierarchical parsing enhances the algorithm:

• (Def. Macro parsing:) For a parsing based on fragment phrases fi ∈ {NP,VP, . . . } we replace
each wi by fi. The length of a phrase, i.e. the number of words, is substituted to the number
of fragments: |p| 7→ |f |.
• (Def. Hybrid parsing:) The complete calculation is first performed on a fragment base and
then – for every fi – the parsing on a word basis is done on the subphrase for fi; ranged by
[wj , . . . wj+|fi|].

5.3.5 Example

Figure 5.6: Dependency Grammar Parsing Example

5.4 Data Modeling
Figure 5.7 extends figure 4.5 to the Dependency Grammar that is implemented in a tree structure.
One of the nodes is declared as the root for the macro-graph16. Within the tree-structure of a
macro-graph, a micro-graph can be instantiated. The constraint, that a node of the micro-graph
cannot recursively instantiate another micro-graph, holds.

The reference from a node to an information element is context-sensitive, so we build associa-
tions only with indices to words wi (here: semanticized tokens) resp. fragements fi; the connection
is constructed at run-time.

Figure 5.7: Partially Entity Relationship Diagram: Phrase with Dependency Grammar

R5 := consists of, R6 := described by, R7 := segmented into
Image Metadata:

Andreas Schwenk
1.0 / 2014-04-29

Author:
Revision:

Semanticized
Token

Preprocessed
Phrase

- id : int
- text : String
- tempus : Tempus
 ∈ { Past, Present, Future }

Dependency
Grammer

R5
1 n

R6

1

1

R7

Fragment
Phrase

- type : FragmentType ∈ { NP, VP }
- beginIndex, endIndex : int
- text : String

n

1

DGGraph

macro
root

parent

- tokenIndexBegin : int
- tokenIndexEnd : int
- depth

childs

has
1

1

1

1
1

1

1

n

micro
root

DGNode

1 1

16Note that for this node parent(nroot) is equal to ∅.

42

Andreas Schwenk Chapter 6. Information Extraction

Chapter 6

Information Extraction

The ultimate goal in the process of information extraction is the synthesis of the subset ontology
O′ for a knowledge domain D:

O′D = (C,R,HC, ∅) ⊂ OD = (C,R,HC,A0), ⇒ A0 := ∅ (6.1)

6.1 Word Frequency Analysis (Concepts C)
6.1.1 Moving Toward a First Estimation of Concepts

As described in the chapter about preprocessing, we can construct the following quintuple for
every word w ∈ Corpus (in this context we define w := lex(w), since candidates for concepts are
examined); containing relevant frequency information F :

F := (w , class(w), flocal(w), fglobal(w), w̃) (6.2)

We denote class(w) as the word-class of the word w, flocal the frequency (:= number of occurrences)
of the word w in all examined texts Tlocal , fglobal the frequency of the word w in the entirety of
English-language texts1 Tglobal , and w̃ the so-called weirdness – a correlation measure between the
local and global frequency. The idea of the latter is taken from [AG05], and is defined as a ratio:

w̃′ := flocal(w)
fglobal(w) (6.3)

Since the BNC neither contains all requested words nor their lexemes, we introduce a practical
adjustment to finally calculate the weirdness w̃; given w̃max ≥ max{W̃} +1. E.g. w̃max := 1000000:

w̃ :=
{
w̃′ if fglobal > 0
w̃max otherwise

(6.4)

To get a first estimation for the concepts (=: CEstimation), we choose all words that have a
word-class that is presumably2 equal to noun, as well have a significant weirdness:

CEstimation(⊇ C) := {(c := w) ∈ F | gT(c,Θ) ∧ eq(c,Noun))} (6.5)

The abbreviations for the two predicates are defined as gT := greater than, and eq := equals. The
threshold Θ must be set empirically and may depend on the examined knowledge domain D.

1Based on the subset of the British National Corpus =: BNC.
2Remember the remaining uncertainty in word class determination.

43

Andreas Schwenk Chapter 6. Information Extraction

6.1.2 Reduction of Redundancy

Under the involvement of all synonyms syn(c ∈ C) for each c, we reduce (in best cases remove) the
redundancy and improve the first estimation:

CEstimation 7→ C (6.6)

6.1.2.1 First Approach

Remove synonymous concepts:

(1.) C := ∅
(2.) for (c1 ∈ Cest.) :

C := C ∪ c1; Cest. := Cest. − {syn(c1)};
end for;

(6.7)

This has the disadvantage that we lose information for further processing steps.

6.1.2.2 Second Approach

In case that a synonym is detected, we add a relation r ∈ R:

R := R ∪ { r := synonym(c1, c2) } (6.8)

The implementation uses this approach.

6.1.3 Example and First Evaluation

Table 6.1 shows four words w ∈ T , i.e. four words of the corpus, and its resulting participance in
the set of concepts C. Note that the local frequency does not differ for the first three words because
each appearance is one of 2010 evaluated words. The word participle would also be ∈ C in case the
threshold is greater than 2000; but otherwise it is not a member of the chosen knowledge domain
D := “The Universe”. This side effect is not handled in the implementation and thus C must be
furthermore seen an estimation and varies from the real set of concepts. If the amount of parsed
texts is very large, the uncertainty can be reduced3.

Table 6.1: Example Frequency Information F

w class(w) flocal(w) fglobal(w) w̃ w ∈ C?
cosmogony noun 0.000497512 0 1000000 true
geocentric adjective 0.000497512 0.0000001 4975.124 false
participle noun 0.000497512 0.0000002 2487.562 (true)
if conjunction 0.001492537 0.0020745 0.719 false

3All non-domain specific nouns w occur randomly.

44

Andreas Schwenk Chapter 6. Information Extraction

6.2 Dependency Grammar Analysis (Relations R)
The use of parsing the Hierarchical Dependency Grammar of each phrase is to create the relations
R ∈ O = {r1, . . . , r|R|}. We assume that is sufficient4 to only handle binary relations given the
form:

r ∈ R ∧ eq(fragmenttype(r),VP) := rname(c1 ∈ C, c2 ∈ C) (6.9)

and in addition enforce:
ci ∈ C ∧ eq(class(ci),Noun) (6.10)

i.e. r is a verbal phrase (=: VP) that itself is not atomic; but this (advantageously) compensates
the lack of the contradistinction of c – with {c ∈ C|eq(class(c),Noun)} – into Noun is either an
object or a subject5.

Figure 6.1 depicts a parsed example-phrase with pre-calculated concepts C, which is used in the
descriptions below.

Figure 6.1: Example for Dependency Grammar Analysis

2.88"1.08" 1.3" 1.77"

Planets are circling around the sun in elliptic orbits
noun verb verb adv det noun prep adj noun

NP VP NP NP

VP

NP NP

PP

NP

Macro Dependency Graph:

Micro Dependency Graphs: NP NP

DP

NP

AP

NP

Set of concepts: C
est

 := { planet, sun, orbit }

Fragments:

Phrase:
Wordclass:

6.2.1 Algorithm

Determine the Node Order: To get a an estimation of the Relations Restimation we annotate
the nodes (=: vertices V) of the Macro Dependency Graph G = (V,E) in breath-first search order
with ascending indices. With Q := queue, T := list of traversed nodes and Ni(n) := the i-th
neighbor of the current node n we have:

Q := T := ∅;
Q := Q ∪ {root(V)};
while (|Q| > 0) :

n := Q0; Q := Q− {n};
∀i∈|Ni(n)| ∧ Ni(n)/∈T : Q := Q ∪ {Ni(n)};
T := T + {n};

end while;

(6.11)

The resulting List T := {T0, . . . T|T |} is finally a permutation of the set V ∈ G in an appropriate
order for the next step.

Estimation-graph for Relations: For each phrase p, an estimation graph Gp is build:

Gp ⊆ O′′ = (C,R) (6.12)

Gp = (V,E) := (Cestimation,p,Restimation,p) (6.13)
4To get an approximate ontology O.
5For example r := (c1, c2) := “are circling around (planet,sun)” clarifies the role of subject and object by complete

declaration of the verbal phrase VP; i.e. planets circle around orbits and not vice versa (:= orbits circle around
planets).

45

Andreas Schwenk Chapter 6. Information Extraction

The concepts Cestimation are given by the frequency analysis and its representation is each ci :=
lexeme(w). The set of relations Restimation is derived from the following steps:

1. We start with a forest6, solely consisting of the concepts Gp,0 = (Cestimation , ∅).
2. The nodes are traversed in the above annotated order, i.e. we iterate over the list T and define

the current index as i and thus the current node ti:
• If the current node ti is an verbal phrase, i.e. eq(fragmentType(ti),VP), we postulate an
empty structure r := text(ti) (∅, ∅) as a candidate for a relation r ∈ Rp (Rp is the set of
relations for the current phrase p).
• If the current node ti is an nominal phrase, i.e. eq(fragmentType(ti),NP) and lexeme(ti)
∈ Cestimation , we extend the previous structure r := rname(c1, c2) in memory and set
(a) in case eq(c1, ∅) → c1 := ti, or otherwise
(b) in case eq(c2, ∅) → c2 := ti.
Case (b) accomplishes the relation r and thus it is added to the phrase relations Rp.
The graph is than updated to:

Gp,i+1 := (Cestimation ∈ Gp,i, Rp ∈ Gp,i ∪ {r}) (6.14)

Since each ci is a lexeme, we loose information, if the used word in the phrase for ci is e.g. in plural
form. So, we can further annotate this to the relation (lhs := left hand side := c1, rhs := right
hand side := c2):

annotate(r) := (lexeme(lhs)< lexemetype >) | (lexeme(rhs)< lexemetype >) (6.15)

While adding ci =: NP to a relation, the micro dependency grammar can add attributes; e.g. in
form of adjectives. This upgrades the set C of subjects:

annotate(ci) := Adjective(wi ∈ Gp,micro(ci)) (6.16)

Then ci := NP is attributed to attr(Noun) := {Adj}.

6.2.2 Example

Starting from the phrase in figure 6.1 we sort the Macro Dependency Graph in breath first search
order; according to equation 6.11:

1. VP(are circling around)
2. NP(planets) →micro ` N(planet<plural>) a
3. NP(the sun) →micro ` Noun(sun) — Det(the) a
4. NP(elliptic orbits) →micro ` N(orbits<plural>) — Adj(elliptic) a
5. PP(in)

The first estimation graph G0 equals (with concepts from word frequency analysis) to:

Gp,0 = (Cestimation , ∅) := ({planet, sun, orbit}, ∅) (6.17)

Application of the algorithm results in tabular form. “are circling around” is abbreviated to “a.c.a.”:
6A forest is a directed graph with a number of incoherent components greater than (or equal to) one and each is

a tree.

46

Andreas Schwenk Chapter 6. Information Extraction

Table 6.2: Example Extraction of Relations R

Step Meta-token Type ∈ Cest. Relation r Graph
1 a.c.a. VP - r1 := a.c.a.(∅, ∅) Gp,0
2 planets NP true r1 := a.c.a.(∅, ∅) Gp,0
2.1 lexeme(planets) N true r1 := a.c.a.(planet < plural >, ∅) Gp,0

:= planet
3 the sun NP true r1 := a.c.a.(planet < plural >, ∅) Gp,0
3.1 sun N true r1 := a.c.a.(planet < plural >, sun) Gp,0
3.2 the DET - r1 := a.c.a.(planet < plural >, sun) Gp,1
4 elliptic orbits NP true r2 := ∅(∅, ∅) Gp,1
4.1 lexeme(orbits) N true r2 := ∅(planet<plural>, ∅) Gp,1

:= orbit
4.2 elliptic ADJ - r2 := ∅(c1 := orbit < plural >, ∅), Gp,1

Adj(c1) := elliptic
5 in PP - r2 := ∅(c1 := orbit < plural >, ∅) Gp,1

Adj(c1) := elliptic

The final result for phrase p is the partial ontology O′′p = (Cp,Rp, ∅, ∅). The diagram is depicted in
6.2; and additionally shows semantics from the Wiktionary.

Cp := Cp ∈ Gp,1 := {planet, sun, orbit : Adj({ellptic})} (6.18)

Rp := Rp ∈ Gp,1 := {r1 := VP(ci, cj) := a.c.a.(planet < plural >, sun)} (6.19)

Figure 6.2: Diagram for Graph Gp, 1

planet sun orbit
are circling around

(lhs: <plural>)
- elliptic

[Wiki]:
▪ A circular or elliptical path of one
object around another object.
▪ A sphere of influence; an area of control.
▪ The course of one's usual progression, or
the extent of one's typical range.

6.3 Hyperonomy Analysis (Hierarchy of Concepts HC)
Since the preprocessing implementation provides the partial7 access to the set of semantic relations
for a word w, we extend the ontological knowledge to a hierarchy of concepts, by evaluation of
hyperonyms for every concept c ∈ C. The set of concepts C is given by:

Cestimation := {c1, c2, . . . , c|C|} (6.20)

For each concept ci the lexical semantic net WordNet deliver the set of hyperonyms hyp:

hyp(ci) := {hc1, hc2, . . . , hcn} (6.21)

A single hci is expressed by:

hci := < hyperonym, concept > := < ck, ci > (6.22)
7Only synonyms and hyperonyms are extracted to keep simplicity.

47

Andreas Schwenk Chapter 6. Information Extraction

The following simple algorithm with run-time O(hyp(ci)︸ ︷︷ ︸
const

· n2) ∈ O(n2), (n := |C|) gathers the

hierarchy of concepts HCestimation :

(1.) HCest := ∅
(2.) ∀ci∈Cest : ∀hcj∈hyp(ci) : ∀ck ∈ Cest \ {ci} :

match(hcj , ck) → HCest := HCest ∪ {< ck, ci >}
(6.23)

Since hyp(ci) only delivers words, it must be matched with existing concepts:

match(hcj , ck) := eq(hcj , ck) ∨ ∃w∈hcj : eq(w, ck) (6.24)

We furthermore demand that the last word must match, if the hyperonym is described with more
than one word. An example is:

hyp(lepton) := {hc0 := elementary particle, hc1 := fundemental particle}

The relevant and last word is each particle. We assume that WordNet always has the form:

hcj := [eq(class(hcj,0), Noun)]
or hcj := [eq(class(hcj,0), Adjective) , eq(class(hcj,1), Noun)] (6.25)

6.3.1 Example

Cest := {planet, sun, star,heavenly body, galaxy, . . . } (6.26)

hypWordNet(sun) := {star}
hypWordNet(planet) := {heavily body, celestial body, follower} (6.27)

Cest ∩ hypWordNet(planet) := {heavily body} (6.28)

Thus we get the set HCest :

HCest := {< heavenly body,planet >, . . . } (6.29)

Figure 6.3: Partial Diagram for HCest

planet heavenly body
hyperonym

6.4 Consolidation and Ontology Synthesis

6.4.1 Unification of Partial Ontologies

The previous sections described the process of constructing the mathematical objects of the quadru-
ple for the final ontology:

O′ = (C := {c1, c2, . . . }, R := {Rest,p1, Rest,p2, . . . }, HC := {hc1, hc2, . . . }, ∅) (6.30)

While the Concepts C and Hierarchies of Concepts HC were synthesized for the total corpus, this is
not true for the set or Relations R. The latter were build separately for each phrase p. In equation
6.13 we built a phrasal relation-graph Gp. We denoted:

Gp = (V,E) := (Cestimation,p, Restimation,p)

48

Andreas Schwenk Chapter 6. Information Extraction

Consolidation of the relations means unification of all phrasal sub graphs Gp:

G := ∪p ∈ texts : Gp (6.31)

Finally, the relations are taken from the graphs set of edges: R := E ∈ G. As far as the concepts in
each sub graph Gp are treated as references (and not copies) from the set C; the vertices V merge
implicitly.

6.4.2 Ontology Synthesis in the Web Ontology Language

Since O′ is now complete, we may now export the systems internal representation to the inter-
changable format OWL := Web Ontology Language. OWL is based on RDF8, RDFS9 and XML10.
The official reference can be found in [Owl04]. Listing 6.1 shows the prolog of an OWL-file and
listing 6.2 the epilog:

Listing 6.1: Prolog of the OWL-file
1 <?xml version="1.0"?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
5 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6 xmlns:owl="http://www.w3.org/2002/07/owl#"
7 xmlns="http://www.owl-ontologies.com/Ontology1204192502.owl#"
8 xml:base="http://www.owl-ontologies.com/Ontology1204192502.owl">
9 <owl:Ontology rdf:about=""/>

Listing 6.2: Epilog of the OWL-file
1 </rdf:RDF>

Concepts C and Hierarchies of Concepts HC

For each concept ci ∈ C, we define an OWL-class like in the example in listing 6.311:

Listing 6.3: Definition of a Concept in OWL

1 <owl:Class rdf:ID=" ci ∈ C ">
2 </owl:Class>

If a Hierarchy of Concept hck ∈ HC exists, with hck :=< ci, cj >, the OWL-classes have to be
generated as in listing 6.4. An ordering of the set HC, such that a reference is defined before its
usage (here: definition of ci before cj) is not necessary.

Listing 6.4: Definition of a Hierarchy of Concept in OWL

1 <owl:Class rdf:ID=" ci ∈ C ">
2 </owl:Class>
3
4 <owl:Class rdf:ID=" cj ∈ C ">

5 <rdfs:subClassOf rdf:resource="# ci ∈ C "/>
6 </owl:Class>

8RDF := Resource Description Framework
9RDFS := RDF-Schema

10XML := Extensible Markup Language
11ci ∈ C must be substituted by the name of the concept in format of a string.

49

Andreas Schwenk Chapter 6. Information Extraction

Relations R

For each relation rk ∈ R, we define an OWL-Object Property like in the example in listing 6.5, if
the relation is defined as rk := rk,name(ci, cj):

Listing 6.5: Definition of a Relation in OWL

1 <owl:ObjectProperty rdf:ID=" rk ∈ R ">

2 <rdfs:domain rdf:resource="# ci ∈ C "/>
3 <rdfs:range rdf:resource="# cj ∈ C "/>
4 </owl:ObjectProperty>

6.5 Example
Figure 6.4 shows an example for the phrase-based extraction of Concepts and Hierarchy of Concepts
for the example phrase “The earth is a planet”.

Figure 6.4: Example: C and HC for a Phrase

An example for an extracted relation is depicted in 6.5; for the example phrase “The moon circles
around the earth in 28 days”.

Figure 6.5: Example: R for a Phrase

50

Andreas Schwenk Chapter 7. Implementation Remarks

Chapter 7

Implementation Remarks

7.1 Components
The UML-Component Diagram 7.1 shows the real implementation. Since this project is research
based, and the time is limited, all other information about the implementation may be taken only
from the class diagrams (see below) and the complete source code (listed in the appendix).

Figure 7.1: UML Component Diagram

Image Metadata:
Andreas Schwenk

2.0 / 2014-03-18
Author:
Revision:

<<component>>
Preprocessing

<<component>>
WordClassification

<<component>>
Main

<<component>>
ANN1

1Artificial Neural Network
2British National Corpus
3Dependency Grammar Parser

<<component>>
BNC2

<<component>>
Fuzzy

<<component>>
InformationExtraction

<<component>>
DGParser3

<<component>>
GUIX

<<component>>
HelperFunctions

<<component>>
Wordnet

<<component>>
Lexer

<<component>>
GUI

<<component>>
CorpusMngt.

<<component>>
WiktionaryParse

<<component>>
Hier.of.Conc.Extr.

<<component>>
RelationExtraction

<<component>>
ConceptsExtract.

<<component>>
TempusExtractor

<<component>>
WordFrequency

<<component>>
LexemeDetermin.

<<component>>
FuzzyLogicEditor

<<component>>
GoogleNGram

7.2 Class Diagrams
Class diagrams are provided in the Appendix.

51

Andreas Schwenk Chapter 7. Implementation Remarks

7.3 Statistics
The amount of source code is depicted in the following statistic 7.2. The y-axis measures the
number of code lines; the x-axis shows the appropriate component:

Figure 7.2: Lines of Code =: LoC

OE ANN FL FL-Editor Xgui

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Code

Comment

Blank

SUM

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Code

Comment

Blank

Table 7.1: Abbreviations of Software Components

Abbrev. Description
OE Ontology Extraction
ANN Artificial Neural Networks
FL Fuzzy Logic
FL-Editor Fuzzy Logic Editor
Xgui Extended Graphical User Interface

52

Andreas Schwenk Chapter 8. Evaluation

Chapter 8

Evaluation

As already stated in earlier chapters, we use the knowledge domain D := “The Universe” as
evaluation base. The concrete (partial) corpus is taken from Wikipedia and listed in table 8.1.
To reduce the length of phrases, as well as the overall complexity, the “Simple English” variant of
Wikipedia is used.

Table 8.1: Sources for the Knowledge Domain “The Universe”

Title Source
BigBang simple.wikipedia.org/wiki/BigBang
Galaxy simple.wikipedia.org/wiki/Galaxy
Sun simple.wikipedia.org/wiki/Sun
Universe simple.wikipedia.org/wiki/Universe

8.1 Protégé
Protégé is “A free, open-source ontology editor and framework for building intelligent systems”
[Pro]. The usage restricts here to visualization purposes, i.e. to show a synthesized ontology that
is available in the OWL format (see chapter 6). Example screenshots for the class view (Concepts
C) and Hierarchies (HC) are shown below:

Figure 8.1: Protege Class Hierarchy

53

simple.wikipedia.org/wiki/BigBang
simple.wikipedia.org/wiki/Galaxy
simple.wikipedia.org/wiki/Sun
simple.wikipedia.org/wiki/Universe

Andreas Schwenk Chapter 8. Evaluation

Figure 8.2: Protege OWL Viz

8.2 Resulting Ontology
The resulting ontology is shown in listing 8.1:

Listing 8.1: ontology.owl
1 <?xml version="1.0"?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
5 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6 xmlns:owl="http://www.w3.org/2002/07/owl#"
7 xmlns="http://www.owl-ontologies.com/Ontology1204192502.owl#"
8 xml:base="http://www.owl-ontologies.com/Ontology1204192502.owl">
9 <owl:Ontology rdf:about=""/>

10
11 <owl:Class rdf:ID="lemaitre">
12 </owl:Class>
13
14 <owl:Class rdf:ID="galaxia">
15 </owl:Class>
16
17 <owl:Class rdf:ID="avicenna">
18 </owl:Class>
19
20 <owl:Class rdf:ID="lepton">
21 <rdfs:subClassOf rdf:resource="#particle"/>
22 </owl:Class>
23
24 <owl:Class rdf:ID="redshift">
25 </owl:Class>
26
27 <owl:Class rdf:ID="baruch">
28 </owl:Class>
29
30 <owl:Class rdf:ID="lamda">
31 </owl:Class>
32
33 <owl:Class rdf:ID="antimatter">
34 <rdfs:subClassOf rdf:resource="#matter"/>
35 </owl:Class>
36
37 <owl:Class rdf:ID="spacetime">
38 </owl:Class>
39
40 <owl:Class rdf:ID="sunspot">
41 </owl:Class>
42
43 <owl:Class rdf:ID="lowercase">
44 </owl:Class>

54

Andreas Schwenk Chapter 8. Evaluation

45
46 <owl:Class rdf:ID="univers">
47 </owl:Class>
48
49 <owl:Class rdf:ID="lucretius">
50 </owl:Class>
51
52 <owl:Class rdf:ID="graviton">
53 </owl:Class>
54
55 <owl:Class rdf:ID="photon">
56 </owl:Class>
57
58 <owl:Class rdf:ID="physic">
59 </owl:Class>
60
61 <owl:Class rdf:ID="spinoza">
62 </owl:Class>
63
64 <owl:Class rdf:ID="cosmology">
65 </owl:Class>
66
67 <owl:Class rdf:ID="planck">
68 <rdfs:subClassOf rdf:resource="#physicist"/>
69 </owl:Class>
70
71 <owl:Class rdf:ID="ia">
72 </owl:Class>
73
74 <owl:Class rdf:ID="gravitation">
75 <rdfs:subClassOf rdf:resource="#travel"/>
76 </owl:Class>
77
78 <owl:Class rdf:ID="topology">
79 </owl:Class>
80
81 <owl:Class rdf:ID="doesn">
82 </owl:Class>
83
84 <owl:Class rdf:ID="giordano">
85 </owl:Class>
86
87 <owl:Class rdf:ID="andromeda">
88 </owl:Class>
89
90 <owl:Class rdf:ID="supernova">
91 <rdfs:subClassOf rdf:resource="#star"/>
92 </owl:Class>
93
94 <owl:Class rdf:ID="universe">
95 </owl:Class>
96
97 <owl:Class rdf:ID="helium">
98 <rdfs:subClassOf rdf:resource="#element"/>
99 </owl:Class>

100
101 <owl:Class rdf:ID="johannes">
102 </owl:Class>
103
104 <owl:Class rdf:ID="deuterium">
105 <rdfs:subClassOf rdf:resource="#atom"/>
106 </owl:Class>
107
108 <owl:Class rdf:ID="electromagnetism">
109 </owl:Class>
110
111 <owl:Class rdf:ID="wavelength">
112 <rdfs:subClassOf rdf:resource="#distance"/>
113 </owl:Class>
114
115 <owl:Class rdf:ID="galaxy">
116 </owl:Class>
117
118 <owl:Class rdf:ID="trillion">
119 <rdfs:subClassOf rdf:resource="#amount"/>
120 </owl:Class>
121
122 <owl:Class rdf:ID="datum">
123 </owl:Class>
124
125 <owl:Class rdf:ID="aristotle">
126 </owl:Class>
127
128 <owl:Class rdf:ID="atom">
129 </owl:Class>
130
131 <owl:Class rdf:ID="chlorophyll">
132 <rdfs:subClassOf rdf:resource="#pigment"/>
133 </owl:Class>
134
135 <owl:Class rdf:ID="cicero">
136 </owl:Class>
137
138 <owl:Class rdf:ID="pythagoras">
139 </owl:Class>
140
141 <owl:Class rdf:ID="relativity">

55

Andreas Schwenk Chapter 8. Evaluation

142 <rdfs:subClassOf rdf:resource="#theory"/>
143 </owl:Class>
144
145 <owl:Class rdf:ID="ellipse">
146 </owl:Class>
147
148 <owl:Class rdf:ID="copernicus">
149 </owl:Class>
150
151 <owl:Class rdf:ID="interact">
152 </owl:Class>
153
154 <owl:Class rdf:ID="nucleus">
155 </owl:Class>
156
157 <owl:Class rdf:ID="infra">
158 </owl:Class>
159
160 <owl:Class rdf:ID="epoch">
161 </owl:Class>
162
163 <owl:Class rdf:ID="metric">
164 <rdfs:subClassOf rdf:resource="#measurement"/>
165 <rdfs:subClassOf rdf:resource="#amount"/>
166 </owl:Class>
167
168 <owl:Class rdf:ID="hubble">
169 </owl:Class>
170
171 <owl:Class rdf:ID="expansion">
172 </owl:Class>
173
174 <owl:Class rdf:ID="newtonian">
175 </owl:Class>
176
177 <owl:Class rdf:ID="density">
178 <rdfs:subClassOf rdf:resource="#arrangement"/>
179 </owl:Class>
180
181 <owl:Class rdf:ID="traverse">
182 <rdfs:subClassOf rdf:resource="#travel"/>
183 </owl:Class>
184
185 <owl:Class rdf:ID="higgs">
186 </owl:Class>
187
188 <owl:Class rdf:ID="hoyle">
189 </owl:Class>
190
191 <owl:Class rdf:ID="undertone">
192 <rdfs:subClassOf rdf:resource="#meaning"/>
193 </owl:Class>
194
195 <owl:Class rdf:ID="halo">
196 <rdfs:subClassOf rdf:resource="#light"/>
197 </owl:Class>
198
199 <owl:Class rdf:ID="photosynthesis">
200 </owl:Class>
201
202 <owl:Class rdf:ID="eriugena">
203 </owl:Class>
204
205 <owl:Class rdf:ID="hydrogen">
206 <rdfs:subClassOf rdf:resource="#element"/>
207 </owl:Class>
208
209 <owl:Class rdf:ID="momentum">
210 <rdfs:subClassOf rdf:resource="#property"/>
211 </owl:Class>
212
213 <owl:Class rdf:ID="electron">
214 <rdfs:subClassOf rdf:resource="#lepton"/>
215 </owl:Class>
216
217 <owl:Class rdf:ID="orbit">
218 </owl:Class>
219
220 <owl:Class rdf:ID="observation">
221 <rdfs:subClassOf rdf:resource="#measurement"/>
222 </owl:Class>
223
224 <owl:Class rdf:ID="residue">
225 <rdfs:subClassOf rdf:resource="#matter"/>
226 </owl:Class>
227
228 <owl:Class rdf:ID="sun">
229 <rdfs:subClassOf rdf:resource="#star"/>
230 <rdfs:subClassOf rdf:resource="#light"/>
231 <rdfs:subClassOf rdf:resource="#radiation"/>
232 </owl:Class>
233
234 <owl:Class rdf:ID="imbalance">
235 <rdfs:subClassOf rdf:resource="#property"/>
236 </owl:Class>
237
238 <owl:Class rdf:ID="chaucer">

56

Andreas Schwenk Chapter 8. Evaluation

239 </owl:Class>
240
241 <owl:Class rdf:ID="pendulum">
242 </owl:Class>
243
244 <owl:Class rdf:ID="pigment">
245 </owl:Class>
246
247 <owl:Class rdf:ID="gram">
248 </owl:Class>
249
250 <owl:Class rdf:ID="faster">
251 </owl:Class>
252
253 <owl:Class rdf:ID="equation">
254 </owl:Class>
255
256 <owl:Class rdf:ID="lithium">
257 <rdfs:subClassOf rdf:resource="#element"/>
258 </owl:Class>
259
260 <owl:Class rdf:ID="eyesight">
261 </owl:Class>
262
263 <owl:Class rdf:ID="plasma">
264 <rdfs:subClassOf rdf:resource="#matter"/>
265 </owl:Class>
266
267 <owl:Class rdf:ID="decrease">
268 </owl:Class>
269
270 <owl:Class rdf:ID="conservation">
271 <rdfs:subClassOf rdf:resource="#principle"/>
272 </owl:Class>
273
274 <owl:Class rdf:ID="gravity">
275 </owl:Class>
276
277 <owl:Class rdf:ID="radiation">
278 <rdfs:subClassOf rdf:resource="#energy"/>
279 </owl:Class>
280
281 <owl:Class rdf:ID="earth">
282 <rdfs:subClassOf rdf:resource="#planet"/>
283 <rdfs:subClassOf rdf:resource="#element"/>
284 </owl:Class>
285
286 <owl:Class rdf:ID="abundance">
287 <rdfs:subClassOf rdf:resource="#ratio"/>
288 </owl:Class>
289
290 <owl:Class rdf:ID="quebec">
291 </owl:Class>
292
293 <owl:Class rdf:ID="diameter">
294 <rdfs:subClassOf rdf:resource="#length"/>
295 </owl:Class>
296
297 <owl:Class rdf:ID="universum">
298 </owl:Class>
299
300 <owl:Class rdf:ID="definition">
301 </owl:Class>
302
303 <owl:Class rdf:ID="sphere">
304 <rdfs:subClassOf rdf:resource="#region"/>
305 </owl:Class>
306
307 <owl:Class rdf:ID="doppler">
308 <rdfs:subClassOf rdf:resource="#physicist"/>
309 </owl:Class>
310
311 <owl:Class rdf:ID="matter">
312 </owl:Class>
313
314 <owl:Class rdf:ID="jupiter">
315 <rdfs:subClassOf rdf:resource="#planet"/>
316 <rdfs:subClassOf rdf:resource="#giant"/>
317 </owl:Class>
318
319 <owl:Class rdf:ID="greek">
320 </owl:Class>
321
322 <owl:Class rdf:ID="terminology">
323 </owl:Class>
324
325 <owl:Class rdf:ID="astronomy">
326 </owl:Class>
327
328 <owl:Class rdf:ID="galileo">
329 <rdfs:subClassOf rdf:resource="#astronomer"/>
330 </owl:Class>
331
332 <owl:Class rdf:ID="foucault">
333 <rdfs:subClassOf rdf:resource="#physicist"/>
334 </owl:Class>
335

57

Andreas Schwenk Chapter 8. Evaluation

336 <owl:Class rdf:ID="mass">
337 <rdfs:subClassOf rdf:resource="#property"/>
338 <rdfs:subClassOf rdf:resource="#amount"/>
339 </owl:Class>
340
341 <owl:Class rdf:ID="energy">
342 </owl:Class>
343
344 <owl:Class rdf:ID="continuum">
345 </owl:Class>
346
347 <owl:Class rdf:ID="gauge">
348 </owl:Class>
349
350 <owl:Class rdf:ID="curvature">
351 <rdfs:subClassOf rdf:resource="#form"/>
352 </owl:Class>
353
354 <owl:Class rdf:ID="prediction">
355 </owl:Class>
356
357 <owl:Class rdf:ID="metre">
358 </owl:Class>
359
360 <owl:Class rdf:ID="geometry">
361 </owl:Class>
362
363 <owl:Class rdf:ID="zero">
364 </owl:Class>
365
366 <owl:Class rdf:ID="dust">
367 <rdfs:subClassOf rdf:resource="#matter"/>
368 </owl:Class>
369
370 <owl:Class rdf:ID="microwave">
371 <rdfs:subClassOf rdf:resource="#radiation"/>
372 </owl:Class>
373
374 <owl:Class rdf:ID="net">
375 </owl:Class>
376
377 <owl:Class rdf:ID="observer">
378 </owl:Class>
379
380 <owl:Class rdf:ID="spiral">
381 <rdfs:subClassOf rdf:resource="#rotation"/>
382 </owl:Class>
383
384 <owl:Class rdf:ID="measurement">
385 </owl:Class>
386
387 <owl:Class rdf:ID="particle">
388 </owl:Class>
389
390 <owl:Class rdf:ID="binoculars">
391 </owl:Class>
392
393 <owl:Class rdf:ID="correlation">
394 </owl:Class>
395
396 <owl:Class rdf:ID="cloud">
397 </owl:Class>
398
399 <owl:Class rdf:ID="lighter">
400 </owl:Class>
401
402 <owl:Class rdf:ID="vacuum">
403 <rdfs:subClassOf rdf:resource="#region"/>
404 </owl:Class>
405
406 <owl:Class rdf:ID="planet">
407 </owl:Class>
408
409 <owl:Class rdf:ID="theory">
410 </owl:Class>
411
412 <owl:Class rdf:ID="fusion">
413 </owl:Class>
414
415 <owl:Class rdf:ID="stable">
416 </owl:Class>
417
418 <owl:Class rdf:ID="star">
419 <rdfs:subClassOf rdf:resource="#topology"/>
420 </owl:Class>
421
422 <owl:Class rdf:ID="georges"></owl:Class>
423
424 <owl:Class rdf:ID="light">
425 <rdfs:subClassOf rdf:resource="#radiation"/>
426 <rdfs:subClassOf rdf:resource="#property"/>
427 </owl:Class>
428
429 <owl:Class rdf:ID="preliminary"></owl:Class>
430
431 <owl:Class rdf:ID="form">
432 <rdfs:subClassOf rdf:resource="#property"/>

58

Andreas Schwenk Chapter 8. Evaluation

433 <rdfs:subClassOf rdf:resource="#matter"/>
434 </owl:Class>
435
436 <owl:Class rdf:ID="ours"></owl:Class>
437
438 <owl:Class rdf:ID="moon">
439 <rdfs:subClassOf rdf:resource="#light"/>
440 <rdfs:subClassOf rdf:resource="#radiation"/>
441 </owl:Class>
442
443 <owl:Class rdf:ID="element"></owl:Class>
444
445 <owl:Class rdf:ID="astronomer">
446 <rdfs:subClassOf rdf:resource="#physicist"/>
447 </owl:Class>
448
449 <owl:Class rdf:ID="rotation"></owl:Class>
450
451 <owl:Class rdf:ID="symmetry">
452 <rdfs:subClassOf rdf:resource="#property"/>
453 </owl:Class>
454
455 <owl:Class rdf:ID="physicist">
456 <rdfs:subClassOf rdf:resource="#scientist"/>
457 </owl:Class>
458
459 <owl:Class rdf:ID="traveler"></owl:Class>
460
461 <owl:Class rdf:ID="ordinary"></owl:Class>
462
463 <owl:Class rdf:ID="distance">
464 <rdfs:subClassOf rdf:resource="#arrangement"/>
465 <rdfs:subClassOf rdf:resource="#region"/>
466 </owl:Class>
467
468 <owl:Class rdf:ID="billion">
469 <rdfs:subClassOf rdf:resource="#amount"/>
470 </owl:Class>
471
472 <owl:Class rdf:ID="creation"></owl:Class>
473
474 <owl:Class rdf:ID="singularity"></owl:Class>
475
476 <owl:Class rdf:ID="travel"></owl:Class>
477
478 <owl:Class rdf:ID="speed">
479 <rdfs:subClassOf rdf:resource="#ratio"/>
480 </owl:Class>
481
482 <owl:Class rdf:ID="everything"></owl:Class>
483
484 <owl:Class rdf:ID="generations">
485 <rdfs:subClassOf rdf:resource="#phase"/>
486 </owl:Class>
487
488 <owl:Class rdf:ID="albert"></owl:Class>
489
490 <owl:Class rdf:ID="inflation">
491 <rdfs:subClassOf rdf:resource="#explosion"/>
492 <rdfs:subClassOf rdf:resource="#expansion"/>
493 </owl:Class>
494
495 <owl:Class rdf:ID="dimension"></owl:Class>
496
497 <owl:Class rdf:ID="explosion"></owl:Class>
498
499 <owl:Class rdf:ID="distribution">
500 <rdfs:subClassOf rdf:resource="#arrangement"/>
501 </owl:Class>
502
503 <owl:Class rdf:ID="region">
504 </owl:Class>
505
506 <owl:Class rdf:ID="uniform">
507 </owl:Class>
508
509 <owl:Class rdf:ID="grid">
510 <rdfs:subClassOf rdf:resource="#form"/>
511 </owl:Class>
512
513 <owl:Class rdf:ID="invention">
514 <rdfs:subClassOf rdf:resource="#creation"/>
515 </owl:Class>
516
517 <owl:Class rdf:ID="ratio">
518 </owl:Class>
519
520 <owl:Class rdf:ID="chemical"></owl:Class>
521
522 <owl:Class rdf:ID="limitation"></owl:Class>
523
524 <owl:Class rdf:ID="unknown">
525 <rdfs:subClassOf rdf:resource="#region"/>
526 </owl:Class>
527
528 <owl:Class rdf:ID="lifetime"></owl:Class>
529

59

Andreas Schwenk Chapter 8. Evaluation

530 <owl:Class rdf:ID="overall"></owl:Class>
531
532 <owl:Class rdf:ID="whereas"></owl:Class>
533
534 <owl:Class rdf:ID="giant">
535 <rdfs:subClassOf rdf:resource="#star"/>
536 </owl:Class>
537
538 <owl:Class rdf:ID="length">
539 <rdfs:subClassOf rdf:resource="#property"/>
540 <rdfs:subClassOf rdf:resource="#dimension"/>
541 </owl:Class>
542
543 <owl:Class rdf:ID="bubble"></owl:Class>
544
545 <owl:Class rdf:ID="ancient"></owl:Class>
546
547 <owl:Class rdf:ID="netherlands"></owl:Class>
548
549 <owl:Class rdf:ID="assumption">
550 <rdfs:subClassOf rdf:resource="#theory"/>
551 </owl:Class>
552
553 <owl:Class rdf:ID="background"></owl:Class>
554
555 <owl:Class rdf:ID="kg"></owl:Class>
556
557 <owl:Class rdf:ID="accuracy"></owl:Class>
558
559 <owl:Class rdf:ID="dynamics"></owl:Class>
560
561 <owl:Class rdf:ID="amount"></owl:Class>
562
563 <owl:Class rdf:ID="arrangement"></owl:Class>
564
565 <owl:Class rdf:ID="meaning">
566 <rdfs:subClassOf rdf:resource="#matter"/>
567 </owl:Class>
568
569 <owl:Class rdf:ID="worship"></owl:Class>
570
571 <owl:Class rdf:ID="electrical"></owl:Class>
572
573 <owl:Class rdf:ID="average"></owl:Class>
574
575 <owl:Class rdf:ID="principle"></owl:Class>
576
577 <owl:Class rdf:ID="scientist"></owl:Class>
578
579 <owl:Class rdf:ID="outer"></owl:Class>
580
581 <owl:Class rdf:ID="twist">
582 <rdfs:subClassOf rdf:resource="#rotation"/>
583 </owl:Class>
584
585 <owl:Class rdf:ID="existence"></owl:Class>
586
587 <owl:Class rdf:ID="property">
588 <rdfs:subClassOf rdf:resource="#region"/>
589 </owl:Class>
590
591 <owl:Class rdf:ID="phase">
592 <rdfs:subClassOf rdf:resource="#matter"/>
593 </owl:Class>
594
595 <owl:ObjectProperty rdf:ID="SYNONYM">
596 <rdfs:domain rdf:resource="#sphere"/>
597 <rdfs:range rdf:resource="#orbit"/>
598 </owl:ObjectProperty>
599
600 <owl:ObjectProperty rdf:ID="SYNONYM">
601 <rdfs:domain rdf:resource="#dimension"/>
602 <rdfs:range rdf:resource="#property"/>
603 </owl:ObjectProperty>
604
605 <owl:ObjectProperty rdf:ID="is">
606 <rdfs:domain rdf:resource="#earth"/>
607 <rdfs:range rdf:resource="#planet"/>
608 </owl:ObjectProperty>
609
610 <owl:ObjectProperty rdf:ID="circles around">
611 <rdfs:domain rdf:resource="#moon"/>
612 <rdfs:range rdf:resource="#earth"/>
613 </owl:ObjectProperty>
614
615 <owl:ObjectProperty rdf:ID="is">
616 <rdfs:domain rdf:resource="#theory"/>
617 <rdfs:range rdf:resource="#universe"/>
618 </owl:ObjectProperty>
619
620 <owl:ObjectProperty rdf:ID="proved">
621 <rdfs:domain rdf:resource="#redshift"/>
622 <rdfs:range rdf:resource="#universe"/>
623 </owl:ObjectProperty>
624
625 <owl:ObjectProperty rdf:ID="was">
626 <rdfs:domain rdf:resource="#observation"/>

60

Andreas Schwenk Chapter 8. Evaluation

627 <rdfs:range rdf:resource="#singularity"/>
628 </owl:ObjectProperty>
629
630 <owl:ObjectProperty rdf:ID="is known">
631 <rdfs:domain rdf:resource="#universe"/>
632 <rdfs:range rdf:resource="#radiation"/>
633 </owl:ObjectProperty>
634
635 <owl:ObjectProperty rdf:ID="takes place">
636 <rdfs:domain rdf:resource="#expansion"/>
637 <rdfs:range rdf:resource="#universe"/>
638 </owl:ObjectProperty>
639
640 <owl:ObjectProperty rdf:ID="is">
641 <rdfs:domain rdf:resource="#mass"/>
642 <rdfs:range rdf:resource="#galaxy"/>
643 </owl:ObjectProperty>
644
645 <owl:ObjectProperty rdf:ID="is produced">
646 <rdfs:domain rdf:resource="#gravitation"/>
647 <rdfs:range rdf:resource="#matter"/>
648 </owl:ObjectProperty>
649
650 <owl:ObjectProperty rdf:ID="is">
651 <rdfs:domain rdf:resource="#energy"/>
652 <rdfs:range rdf:resource="#star"/>
653 </owl:ObjectProperty>
654
655 <owl:ObjectProperty rdf:ID="is">
656 <rdfs:domain rdf:resource="#energy"/>
657 <rdfs:range rdf:resource="#earth"/>
658 </owl:ObjectProperty>
659
660 <owl:ObjectProperty rdf:ID="was">
661 <rdfs:domain rdf:resource="#cloud"/>
662 <rdfs:range rdf:resource="#light"/>
663 </owl:ObjectProperty>
664
665 <owl:ObjectProperty rdf:ID="is">
666 <rdfs:domain rdf:resource="#energy"/>
667 <rdfs:range rdf:resource="#earth"/>
668 </owl:ObjectProperty>
669
670 </rdf:RDF>

61

Andreas Schwenk Chapter 9. Conclusion

Chapter 9

Conclusion

The general project goal could be reached: A knowledge acquisition system was designed, imple-
mented and evaluated. The system is capable of extracting partial ontological information. As
expected from a natural language processing system, the uncertainty could not converge to zero.
The quality of the set of concepts C is acceptable, i.e. one can observe a high correlation of subjects
from the testing domain D := “The universe”. Hierarchy of Concepts HC can be rated to be even
more accurate. The quality of Relations R is not as high as expected: Considering the dependency
grammar is a reliable basis, but the relation extraction itself could be refined.

Despite the information extraction, a huge amount of time was spend to the preprocessing part,
which consists of a syntactic and a semantic analysis, enrichment of worth with semantic relations,
the determination of the word classes and word frequencies as well as a prediction of the used tense.

A new Neuro-Fuzzy based approach for hierarchical parsing dependency grammar could be
presented and implemented; the quality depends on the user learning process and can be iteratively
improved.

The focus on own implementations, instead of using external libraries (a) helped for a deep
understanding (b) showed that sufficient implementations must not always rely on long evaluated
external projects and (c) even advanced to new approaches, e.g. a Neuro-Fuzzy system for depen-
dency grammar parsing. Detailed critical evaluations for specialized topics can be found in most
chapters.

62

Andreas Schwenk Bibliography

Bibliography

[AG05] Khurshid Ahmad and Lee Gillam. Automatic Ontology Extraction from Unstructured
Texts. University of Surrey
https://www.scss.tcd.ie/Khurshid.Ahmad/Research/OntoTerminology/

ODBASE2005.final.pdf, 2005.

[Bar13] Prof. Rainer Bartz. Computational Intelligence – Lecture. Cologne University of Applied
Sciences.
http://www.nt-rt.fh-koeln.de/index.html, 2013.

[Bri14] About the British National Corpus.
http://www.natcorp.ox.ac.uk/corpus/index.xml, 2014.

[CFL12] Alexander Clark, Chris Fox, and Shalom Lappin. The Handbook of Computational Lin-
guistics and Natural Language Processing. John Wiley & Sons. ISBN 978-1-118-34718-8,
2012.

[CM02] Andrew Carstairs-McCarthy. An Introduction to English Morphology: Words and Their
Structure. Edinburgh University Press. ISBN 0 7486 1326 9, 2002.

[Cov01] Michael A. Covington. A Fundamental Algorithm for Dependency Parsing. The Univer-
sity of Georgia http://www.stanford.edu/~mjkay/covington.pdf, 2001.

[DOM] XML DOM Parser. W3 Schools
http://www.w3schools.com/dom/dom_parser.asp.

[EP08] Katrin Erk and Prof. Lutz Priese. Theoretische Informatik. Springer. ISBN 978-3-540-
76319-2, 2008.

[Gai65] H. Gaifman. Dependency Systems and Phrase Structure Systems. Inf. Control, 1965.

[Irr14] List of English Irregular Verbs.
http://www.usingenglish.com/reference/irregular-verbs/, 2014.

[Joh65] Elmer D. Johnson. A history of libraries in the western world. Scarecrow Press, New
Jersey. ISBN 0-8108-0949-4, 1965.

[LGT96] Steve Lawrence, C. Lee Giles, and Ah Chung Tsoi. What Size Neural Network Gives Op-
timal Generalization? Convergence Properties of Backpropagation. Pennsylvania State
University http://clgiles.ist.psu.edu/papers/UMD-CS-TR-3617.what.size.

neural.net.to.use.pdf, 1996.

[Lin14] Link Grammar. http://www.link.cs.cmu.edu/link/, 2014.

[MV01] Alexander Maedche and Raphael Volz. The Ontology Extraction & Maintenance Frame-
work Text-To-Onto.
http://users.csc.calpoly.edu/~fkurfess/Events/DM-KM-01/Volz.pdf, 2001.

63

https://www.scss.tcd.ie/Khurshid.Ahmad/Research/OntoTerminology/ODBASE2005.final.pdf
https://www.scss.tcd.ie/Khurshid.Ahmad/Research/OntoTerminology/ODBASE2005.final.pdf
http://www.nt-rt.fh-koeln.de/index.html
http://www.natcorp.ox.ac.uk/corpus/index.xml
http://www.stanford.edu/~mjkay/covington.pdf
http://www.w3schools.com/dom/dom_parser.asp
http://www.usingenglish.com/reference/irregular-verbs/
http://clgiles.ist.psu.edu/papers/UMD-CS-TR-3617.what.size.neural.net.to.use.pdf
http://clgiles.ist.psu.edu/papers/UMD-CS-TR-3617.what.size.neural.net.to.use.pdf
http://www.link.cs.cmu.edu/link/
http://users.csc.calpoly.edu/~fkurfess/Events/DM-KM-01/Volz.pdf

Andreas Schwenk Bibliography

[Owl04] OWL Web Ontology Language – Semantics and Abstract Syntax.
http://www.w3.org/TR/owl-semantics/, 2004.

[Pro] Protégé. Stanford University.
http://protege.stanford.edu.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Represen-
tations by Back-Propagating Errors. Nature – International Weekly Journal of Science,
1986.

[RN10] Studart Russell and Peter Norvig. Artificial Intelligence – A Modern Approach. Pearson
Education. ISBN 978-0-13-207148-2, 2010.

[SS92] John F. Sowa and Stuart C. Shapiro. Encyclopedia of Artificial Intelligence. Wiley. ISBN
978-0471503071
http://www.jfsowa.com/pubs/semnet.htm, 1992.

[Stu] Study sheet for semantics.
http://pandora.cii.wwu.edu/vajda/ling201/test3materials/

semanticsHANDOUT.htm.

[Tem] Verb Tenses. University of Washington.
http://faculty.washington.edu/marynell/grammar/verbtenses.html.

[Wik14a] Information Explosion. Wikipedia
http://en.wikipedia.org/wiki/Information_explosion, 2014.

[Wik14b] Treebank. Wikipedia http://en.wikipedia.org/wiki/Treebank, 2014.

[Wir96] Niklaus Wirth. Compiler Construction. Addison-Wesley. ISBN 978-0201403534, 1996.

[Wor14] Wordnet. http://wordnet.princeton.edu, 2014.

64

http://www.w3.org/TR/owl-semantics/
http://protege.stanford.edu
http://www.jfsowa.com/pubs/semnet.htm
http://pandora.cii.wwu.edu/vajda/ling201/test3materials/semanticsHANDOUT.htm
http://pandora.cii.wwu.edu/vajda/ling201/test3materials/semanticsHANDOUT.htm
http://faculty.washington.edu/marynell/grammar/verbtenses.html
http://en.wikipedia.org/wiki/Information_explosion
http://en.wikipedia.org/wiki/Treebank
http://wordnet.princeton.edu

Andreas Schwenk

Appendices

65

Andreas Schwenk Appendix A. Document Type Definitions

Appendix A

Document Type Definitions

The following listings show the Document Type Definitions (=: DTDs) to specify the XML files,
that are used in the project:

Listing A.1: fuzzy.dtd
1 <!ELEMENT fuzzy (inputs, outputs, inference, defuzzification)>
2 <!ELEMENT inputs (LV*)>
3 <!ELEMENT outputs (LV*)>
4 <!ELEMENT LV (LT*, rendering)>
5 <!ATTLIST LV
6 name CDATA #REQUIRED
7 >
8 <!ATTLIST LT
9 name CDATA #REQUIRED

10 type CDATA #REQUIRED
11 xl CDATA #IMPLIED
12 xr CDATA #IMPLIED
13 xm CDATA #IMPLIED
14 xm1 CDATA #IMPLIED
15 xm2 CDATA #IMPLIED
16 a CDATA #IMPLIED
17 b CDATA #IMPLIED
18 sigma CDATA #IMPLIED
19 >
20 <!ATTLIST rendering
21 left CDATA #REQUIRED
22 right CDATA #REQUIRED
23 major CDATA #REQUIRED
24 minor CDATA #REQUIRED
25 >
26 <!ELEMENT inference (rule*)>
27 <!ATTLIST inference
28 aggregation CDATA #REQUIRED
29 accumulation CDATA #REQUIRED
30 activation CDATA #REQUIRED
31 >
32 <!ELEMENT rule (#PCDATA)>
33 <!ATTLIST rule
34 name CDATA #REQUIRED
35 >
36 <!ATTLIST defuzzification
37 mathod CDATA #REQUIRED
38 >

Listing A.2: fuzzyrules.dtd
1 <!ELEMENT fuzzyrules (rule*)>
2 <!ELEMENT rule (#PCDATA)>
3 <!ATTLIST rule
4 name CDATA #REQUIRED
5 >

66

Andreas Schwenk Appendix A. Document Type Definitions

Listing A.3: article.dtd
1 <!ELEMENT article (name, chapter)>
2 <!ELEMENT name (#PCDATA)>
3 <!ELEMENT chapter (phrase*, chapter*)>
4 <!ATTLIST chapter
5 title CDATA #REQUIRED
6 id CDATA #REQUIRED
7 >
8 <!ELEMENT phrase (#PCDATA)>
9 <!ATTLIST phrase

10 id CDATA #REQUIRED
11 >

Listing A.4: preprocessing.dtd
1 <!ELEMENT preprocessing (phrase)>
2
3 <!ELEMENT phrase (tempus, syntax, dependency, annotations)>
4 <!ATTLIST phrase
5 id CDATA #REQUIRED
6 text CDATA #REQUIRED
7 >
8
9 <!ATTLIST tempus

10 t CDATA #REQUIRED
11 >
12
13 <!ELEMENT syntax (fragment|word|greek_word|number|symbol|period|END|Comma|Semicolon|

OpeningParenthesis|ClosingParenthesis|Plus|Minus|Percent|Quotes)*>
14 <!ATTLIST fragment
15 type CDATA #REQUIRED
16 size CDATA #REQUIRED
17 >
18 <!ELEMENT word (#PCDATA)>
19 <!ATTLIST word
20 class CDATA #REQUIRED
21 lexeme CDATA #REQUIRED
22 lexemeType CDATA #REQUIRED
23 idx CDATA #REQUIRED
24 >
25 <!ELEMENT greek_word (#PCDATA)>
26 <!ATTLIST greek_word
27 idx CDATA #REQUIRED
28 >
29 <!ELEMENT number (#PCDATA)>
30 <!ATTLIST number
31 idx CDATA #REQUIRED
32 >
33 <!ELEMENT symbol (#PCDATA)>
34 <!ATTLIST symbol
35 idx CDATA #REQUIRED
36 >
37
38 ##### same for every other token type #####
39
40 <!ATTLIST period
41 idx CDATA #REQUIRED
42 >
43 <!ATTLIST end
44 idx CDATA #REQUIRED
45 >
46
47 <!ELEMENT dependency (Verb)>
48
49 <!ELEMENT Verb (Verb|Noun|Adjective|Adverb|Preposition|Determinative|Conjunction|Interjection|

Numeral|UNKNOWN|Comma|Period)*>
50 <!ATTLIST Verb
51 word CDATA #REQUIRED
52 idx CDATA #REQUIRED
53 fuzzy CDATA #REQUIRED
54 >
55 <!ELEMENT Noun (Verb|Noun|Adjective|Adverb|Preposition|Determinative|Conjunction|Interjection|

Numeral|UNKNOWN|Comma|Period)*>
56 <!ATTLIST Noun
57 word CDATA #REQUIRED
58 idx CDATA #REQUIRED
59 fuzzy CDATA #REQUIRED
60 >
61
62 ##### ... same for every other word class ... #####
63
64 <!ELEMENT annotations (word*)>
65 <!ELEMENT word (wordfrequency,semantics,synonyms,hyperonyms)>
66 <!ATTLIST word
67 w CDATA #REQUIRED
68 idx CDATA #REQUIRED
69 >
70 <!ATTLIST wordfrequency
71 word CDATA #REQUIRED

67

Andreas Schwenk Appendix A. Document Type Definitions

72 lexeme CDATA #REQUIRED
73 >
74 <!ELEMENT semantics (class*)>
75 <!ELEMENT class (semantic*)>
76 <!ATTLIST class
77 type CDATA #REQUIRED
78 probability CDATA #REQUIRED
79 >
80 <!ELEMENT semantic (#PCDATA)>
81 <!ATTLIST semantic
82 sid CDATA #REQUIRED
83 >
84 <!ELEMENT synonyms (synonym*)>
85 <!ATTLIST synonym
86 sid CDATA #REQUIRED
87 word CDATA #REQUIRED
88 >
89 <!ELEMENT hyperonyms (hyperonym*)>
90 <!ATTLIST hyperonym
91 hid CDATA #REQUIRED
92 word CDATA #REQUIRED
93 >

Listing A.5: TrainingSets.dtd
1 <!ELEMENT TrainingSets (TS*)>
2 <!ELEMENT TS (Type, Phrase, WordClasses, Data, TimeStamp)>
3 <!ATTLIST TS
4 index CDATA #REQUIRED
5 >
6 <!ATTLIST Type
7 t CDATA #REQUIRED
8 >
9 <!ATTLIST Phrase

10 text CDATA #REQUIRED
11 >
12 <!ATTLIST WordClasses
13 wc CDATA #REQUIRED
14 >
15 <!ATTLIST Data
16 parentIndex CDATA #REQUIRED
17 parentName CDATA #REQUIRED
18 childIndex CDATA #REQUIRED
19 childName CDATA #REQUIRED
20 link CDATA #REQUIRED
21 >
22 <!ATTLIST TimeStamp
23 ts CDATA #REQUIRED
24 >

68

Andreas Schwenk Appendix B. Fuzzy Logic Editor

Appendix B

Fuzzy Logic Editor

B.1 Definition of a FLS via an XML File

Listing B.1: Dependency Grammar FLS Properties: Excerpt
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE fuzzy SYSTEM "fuzzy">
3
4 <fuzzy>
5 <inputs>
6 <LV name="position">
7 <LT name="positiveSmall" type="Trapezoidal" xl="-1.0" xm1="-1.0" xm2="5.0" xr="15.0"/>
8 <LT name="positiveLarge" type="Trapezoidal" xl="0.0" xm1="15.0" xm2="40.0" xr="100.0"/>
9 <rendering left="0.0" right="50.0" major="5.0" minor="1.0"/>

10 </LV>
11 <LV name="relativePosition">
12 <LT name="negativeSmall" type="Trapezoidal" xl="-5.0" xm1="-2.0" xm2="-1.0" xr="0.0"/>
13 <LT name="positiveSmall" type="Trapezoidal" xl="0.0" xm1="1.0" xm2="2.0" xr="5.0"/>
14 <LT name="zero" type="Triangular" xl="-1.0" xm="0.0" xr="1.0"/>
15 <LT name="positiveLarge" type="RightHandSaddle" xl="3.0" xr="7.0"/>
16 <LT name="negativeLarge" type="LeftHandSaddle" xl="-7.0" xr="-3.0"/>
17 <LT name="positive" type="Trapezoidal" xl="0.0" xm1="1.0" xm2="75.0" xr="100.0"/>
18 <rendering left="-10.0" right="10.0" major="5.0" minor="1.0"/>
19 </LV>
20 <LV name="root">
21 <LT name="false" type="LeftHandSaddle" xl="0.1" xr="0.3"/>
22 <LT name="true" type="RightHandSaddle" xl="0.7" xr="0.9"/>
23 <rendering left="0.0" right="1.0" major="0.2" minor="0.1"/>
24 </LV>
25 <LV name="noun">
26 <LT name="low" type="Sigmoid" a="10.0" b="0.3"/>
27 <LT name="high" type="Sigmoid" a="-10.0" b="0.7"/>
28 <rendering left="0.0" right="1.0" major="0.1" minor="0.1"/>
29 </LV>
30 ...
31 <LV name="nounParent">
32 <LT name="low" type="Sigmoid" a="10.0" b="0.3"/>
33 <LT name="high" type="Sigmoid" a="-10.0" b="0.7"/>
34 <rendering left="0.0" right="1.0" major="0.1" minor="0.1"/>
35 </LV>
36 <LV name="verbParent">
37 <LT name="low" type="Sigmoid" a="10.0" b="0.3"/>
38 <LT name="high" type="Sigmoid" a="-10.0" b="0.7"/>
39 <rendering left="0.0" right="1.0" major="0.1" minor="0.1"/>
40 </LV>
41 ...
42 </inputs>
43 <outputs>
44 <LV name="link">
45 <LT name="low" type="Singleton" xm="0.0"/>
46 <LT name="medium" type="Singleton" xm="0.5"/>
47 <LT name="high" type="Singleton" xm="1.0"/>
48 <rendering left="-0.1" right="1.1" major="0.2" minor="0.1"/>
49 </LV>
50 </outputs>
51 <inference aggregation="MinMax" accumulation="Max" activation="Min">
52 <rule name="R1">IF verb IS high AND position IS positiveSmall AND root IS true THEN link IS

high.</rule>
53 <rule name="R2">IF verb IS low AND root IS true THEN link IS low.</rule>
54 <rule name="R3">IF noun IS high AND relativePosition IS negativeSmall THEN link IS high.</

rule>
55 <rule name="R4">IF noun IS high AND relativePosition IS positiveSmall THEN link IS high.</

rule>
56 <rule name="R5">IF det IS high AND nounParent IS high AND relativePosition IS negativeSmall

THEN link IS high.</rule>
57 <rule name="R6">IF det IS high AND nounParent IS high AND relativePosition IS positive THEN

link IS low.</rule>
58 <rule name="R7">IF det IS high AND nounParent IS low THEN link IS low.</rule>
59 </inference>
60 <defuzzyfication method="Centroid"/>
61 </fuzzy>

69

Andreas Schwenk Appendix C. Class Diagrams

Appendix C

Class Diagrams
C.1 Control

Figure C.1

70

Andreas Schwenk Appendix C. Class Diagrams

C.2 Preprocessing

Figure C.2

Figure C.3

Figure C.4

Figure C.5

71

Andreas Schwenk Appendix C. Class Diagrams

Figure C.6

Figure C.7

Figure C.8

72

Andreas Schwenk Appendix C. Class Diagrams

Figure C.9

Figure C.10

Figure C.11

Figure C.12

Figure C.13

73

Andreas Schwenk Appendix C. Class Diagrams

C.3 Information Extraction

Figure C.14

C.4 Graphical User Interface

Figure C.15

C.5 Other Classes

Figure C.16

74

Andreas Schwenk Appendix C. Class Diagrams

Figure C.17

Figure C.18

75

Andreas Schwenk List of Figures

List of Figures

1.1 Objective – Simple Overview . 9

2.1 Semantic Network for O′Universe . 11
2.2 Example for an Annotated Dependency Grammar Phrase 12
2.3 Fuzzy Logic System – Overview . 13
2.4 Multi Layer Perceptron (=: MLP) . 14
2.5 A Single Neuron . 14
2.6 Error Development as a Function of the Current Epoche 15
2.7 Weights for the “AND-test”(η = 2.0, 150 epochs, α = 0.5) 15

3.1 Overview of the System . 17
3.2 Entity Relationship Diagram: Corpus Structure . 18
3.3 Overview of the Preprocessing Part . 18
3.4 Overview of the Information Extraction Part . 19
3.5 Graphical User Interface: Hierarchy . 20
3.6 Graphical User Interface: Options . 20
3.7 Graphical User Interface: Phrase Analysis . 21

4.1 Partial Preprocessing Steps . 22
4.2 Wiktionary Entity Relationship Diagram (=: ERD) 23
4.3 English Word Classes . 24
4.4 Example Query for WordNet Entry »sun« . 31
4.5 Entity Relationship Diagram: Phrase . 31

5.1 Neuro-Fuzzy System Integration . 33
5.2 Graphical User Interface for Dependency Grammar Learning 35
5.3 Structure of the ANN . 37
5.4 Fuzzy Logic Editor – Screenshot . 38
5.5 Graphical User Interface for Fuzzy Rule Synthesis . 41
5.6 Dependency Grammar Parsing Example . 42
5.7 Partially Entity Relationship Diagram: Phrase with Dependency Grammar 42

6.1 Example for Dependency Grammar Analysis . 45
6.2 Diagram for Graph Gp, 1 . 47
6.3 Partial Diagram for HCest . 48
6.4 Example: C and HC for a Phrase . 50
6.5 Example: R for a Phrase . 50

7.1 UML Component Diagram . 51
7.2 Lines of Code =: LoC . 52

8.1 Protege Class Hierarchy . 53
8.2 Protege OWL Viz . 54

76

Andreas Schwenk List of Tables

List of Tables

2.1 ANN-Example: Real output . 15

3.1 Phrase Analysis GUI . 21

4.1 Functions on a Word w . 26
4.2 Types of Lexemes (=: lextypes) . 26
4.3 Manual Lexeme Extraction for Verbs . 27
4.4 Wiktionary based Lexeme Extraction for Verbs . 28
4.5 Temporal Keywords by Tense; taken from [Tem] . 28
4.6 BNC Example for w := “earth” . 30

5.1 Dependency Grammar Learning – GUI Options . 35
5.2 Linguistic Variables LV ∈ FLS . 39
5.3 Example Input-Vector for the FLS . 39

6.1 Example Frequency Information F . 44
6.2 Example Extraction of Relations R . 47

7.1 Abbreviations of Software Components . 52

8.1 Sources for the Knowledge Domain “The Universe” 53

77

	Introduction
	Motivation
	Objective
	Key Aspects to be Considered
	Determination of a Knowledge Domain for Evaluation
	Contents

	Basics
	Knowledge Representation
	Ontologies

	Computer Linguistics and Natural Language Processing
	Grammar

	Computational Intelligence
	Fuzzy Logic
	Artificial Neural Networks

	Mathematical Notation
	Phrases
	Grammar

	Conception
	Corpus Control
	Preprocessing
	Information Extraction
	Graphical User Interface Design
	Corpus Management
	Options
	Phrase Analysis

	Preprocessing
	Lexical Analysis
	N-Grams

	Syntactic and Semantic Analysis
	Word Classification
	Lexeme Detection
	Tempus Extraction
	Meanings

	Word Frequency
	British National Corpus

	Extraction of Semantic Relations
	Synonyms
	Hyperonyms

	Data Modeling

	Dependency Grammar Parsing
	Introduction
	Classical Approaches
	A New Neuro-Fuzzy-Approach
	Mathematical Representation

	Design
	System Integration
	Training
	Graphical User Interface

	Algorithm
	Artificial Neural Networks for Supervised Learning
	Fuzzy Logic to Clarify the Parsing Behavior with Natural Language Rules
	Synthesis of the Fuzzy Rules from the Neuronal Data
	Build the Grammar Tree
	Example

	Data Modeling

	Information Extraction
	Word Frequency Analysis
	Moving Toward a First Estimation of Concepts
	Reduction of Redundancy
	Example and First Evaluation

	Dependency Grammar Analysis
	Algorithm
	Example

	Hyperonomy Analysis
	Example

	Consolidation and Ontology Synthesis
	Unification of Partial Ontologies
	Ontology Synthesis in the Web Ontology Language

	Example

	Implementation Remarks
	Components
	Class Diagrams
	Statistics

	Evaluation
	Protégé
	Resulting Ontology

	Conclusion
	Bibliography
	Appendices
	Document Type Definitions
	Fuzzy Logic Editor
	Definition of a FLS via an XML File

	Class Diagrams
	Control
	Preprocessing
	Information Extraction
	Graphical User Interface
	Other Classes

